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ABSTRACT

A new Boussinesq-type model for surface water wave propagation in coastal

regions is derived. The model is fully nonlinear and accurate to 0(P4), where p

is the wave number nondimensionalized by the water depth. As an extension to

the second order model proposed by Nwogu (1993), a new dependent variable

is defined as a weighted average between the velocity potential at two distinct

water depths to force the model to have a (4,4) Pad6 approximation of the exact

linear dispersion relationship. The fourth order polynomial approximation for

the velocity potential vertical profile represents a great improvement over existing

0(p2) models, specially over the intermediate to deep water range. Nonlinear

effects including generation of super and subharmonics, and amplitude dispersion

are investigated. A finite-difference numerical scheme is developed for the 1-

dimensional version of the model for the free surface displacement and a velocity-

type variable. Several solitary wave solutions are studied and compared with

other models, as well as the solution to the full problem. Computations of waves

propagating over submerged bars are compared with laboratory measurements

and with results of the fully nonlinear 0(p2) Boussinesq model by Wei et all

(1995). All computations show that the present model represents a considerable

improvement over the 0(p 2 ) model.
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Chapter 1

INTRODUCTION

One of the most important tasks of coastal engineers is to accurately predict

waves in coastal regions. Wind generated waves (or surface waves) can propagate

from deep ocean to the continental shelf with little energy loss. As the waves enter

the continental shelf, several transformations occur directly and indirectly related

to the fact that the waves can now "feel" the bottom. Deep water waves are quite

well understood in terms of both linear and nonlinear wave theories. Due to the

fact only the upper layer of the ocean (about half of a wave length) is affected by

the presence of the waves, in deep water the treatment of the vertical dependence

of the flow is simpler than in nearshore areas, as it does not depend on the bottom

topography. When the waves approach the coast, the water depth is no longer

large compared to the wave length, and the waves experience effects such as re-

fraction, diffraction, reflection, shoaling, nonlinear interactions, and finally reach

the surf-zone, where wave breaking takes place. At this point sudden reduction in

the momentum flux of the wave causes effects such as set-up (cross-shore increase

in the free surface mean level to balance the momentum flux reduction), long-

shore current (which, combined with the fact that wave breaking puts sediment

in suspension, strongly contributes to sediment transport), among others. The

basic aim of this dissertation is to contribute an accurate and reasonably efficient

model capable of modeling waves from deep to shallow water up to the point of

(but excluding) wave breaking.



The earliest nonlinear model in water of finite depth was due to Airy (1845),

known as nonlinear long wave theory or nonlinear shallow water theory. Airy's

theory assumes dispersive effects to be negligible (flow is depth independent). This

is a good approximation only for very long waves (water depth is small compared

to the wave length) such as tsunamis, infra-gravity waves, and waves whose length

is of the order of the width of the ocean basin, in which case Coriolis effects are

also important. For surface gravity waves, shallow water theory is not applicable

in most of the depth range in coastal regions.

The difficulty in modeling surface wave propagation is the fact that in

intermediate to shallow water, the vertical structure of the flow changes quickly,

and therefore models need either to be 3-dimensional, which is computationally

costly, or, somehow, to eliminate the vertical dependence, but account for its

effects in the 2-dimensional (horizontal) model. The latter has been the choice

adopted in almost the totality of the dispersive nonlinear wave models in existence,

including the present work. We now briefly review some of these models.

1.1 Existing Boussinesq-Type Models

The earliest model which is independent of the vertical coordinate, but in-

cludes weakly dispersive and nonlinear effects, was derived by Boussinesq (1872).

The model, which was derived for horizontal bottom only, assumes irrotationality

of the flow, parabolic vertical dependence of the horizontal velocity (or velocity

potential) and linear vertical dependence of the vertical velocity, also, it has the

depth averaged horizontal velocity and the free surface elevation as the depen-

dent variables. As an aside, in this work, we refer to Boussinesq-type (or simply

Boussinesq) models as those which assume irrotationality and that the velocity

potential (or horizontal velocity) has a polynomial vertical dependence, leading
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to a set of equations governing the free surface elevation and a vertically inde-

pendent horizontal velocity-related variable (e.g. depth-averaged velocity, total

mass flux, velocity potential at the bottom, etc). Korteweg and deVries (1895)

used the same assumptions as Boussinesq (1872) and, eliminating the velocity

variable, derived a single equation (known as KdV equation) governing the free

surface elevation of weakly nonlinear weakly dispersive long waves propagating in

one direction. The KdV equation appears in many branches of physics and has

received much attention, mostly due to the fact that it has analytical solutions

in terms of non-elementary functions. In the case of gravity waves, well known

solutions for the KdV equation are the cnoidal wave and the solitary wave.

To overcome the horizontal bottom limitation in the original Boussinesq

model, which prevents the model from being a very useful tool in coastal engi-

neering, Mei and Me'haut6 (1966) and Peregrine (1966) derived Boussinesq mod-

els for variable depth. The two models are similar in the sense that both use the

same asymptotic assumptions (weak nonlinearity and dispersiveness), but Mei and

Mfhaut6 (1966) used the velocity at the bottom as a dependent variable, whereas

Peregrine (1966) used the depth-averaged velocity. Due to its wide popularity in

the coastal engineering community, the model by Peregrine (1966) is often called

the standard Boussinesq model.

Although standard Boussinesq models can predict wave transformation in

coastal regions with relative accuracy, its range of validity is limited to fairly

shallow water (McCowan, 1987), since its linear dispersion relationship is only a

polynomial approximation of the exact one. In order to be applicable in deeper

water, many authors have suggested extending the validity of Boussinesq mod-

els. These "extended Boussinesq models" have adjustable rational polynomial

approximations for the dispersion relationship, a major improvement over the
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approximation resulting from the standard Boussinesq models.

Madsen et al. (1991) and Madsen and Sorensen (1992) included higher

order terms with adjustable coefficients into the standard Boussinesq equations

for constant and variable depth, respectively. The addition of these terms resulted

in a rational polynomial expansion as the linear dispersion relationship. The

coefficients were then adjusted to give better linear shoaling coefficient and a

more accurate approximation to the exact linear dispersion relationship, namely,

the (2,2) Pad6 approximant (Witting, 1984).

By defining the dependent variable as the velocity at an arbitrary depth,

Nwogu (1993) achieved a rational polynomial approximation to the exact lin-

ear dispersion relationship without the need to add higher order terms to the

equations. Although the arbitrary location could be chosen to give a (2,2) Pad6

approximant as the linear dispersion relationship, Nwogu (1993) chose an alter-

native value which minimized the error in the linear phase speed over some depth

range. Chen and Liu (1995) derived a model analogous to Nwogu's but used a

velocity potential at an arbitrary depth as the dependent variable.

Wei et al. (1995) used Nwogu's approach to derive a Boussinesq model

(referred to henceforth as the WKGS model) without the weak nonlinearity re-

striction. Numerical computations showed a major improvement over the weakly

nonlinear model of Nwogu, and compared well with solitary wave solutions of

the full potential problem obtained with the boundary elements method by Grilli

et al. (1989).

Schiffer and Madsen (1995) combined the idea by Madsen and Sorensen

(1992) of including higher order terms in the equations with the approach of

redefining the dependent variable as in Nwogu (1993), to obtain a Boussinesq
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model which has an extremely accurate linear dispersion relationship given by

a (4,4) Pad6 approximant, despite having only second order vertical polynomial

approximation for the horizontal velocity.

Boussinesq-type equations can also be derived using a Hamiltonian formu-

lation (Broer, 1974, Broer, 1975, Broer et al., 1976), where the canonical variables

are the free surface elevation and the velocity potential evaluated at the free sur-

face. The equations derived by Broer do not produce a positive definite linear

dispersion relationship and predicts negative phase speeds in deeper water. Im-

provements over Broer's model to extend the validity of the equations for shorter

waves were made by Van der Veen and Wubs (1993) whose dispersion relation-

ship is a (2,2) Pad6 approximant. Mooiman (1991) uses a rational polynomial

approximation with arbitrary coefficients for the Hamiltonian operator, and the

coefficients are determined by a minimization of the error in the linear dispersion

relationship. Due to the difficulty involved in computing the kinetic energy part of

the total Hamiltonian, all Hamiltonian-based models to this date are only weakly

nonlinear.

1.2 Other Existing Models

Although they are the most widely used, Boussinesq models are not the

only type of models that eliminate the vertical dependence from the full problem,

while including dispersive and nonlinear effects.

Serre (1953) derived a fully nonlinear model consisting of equations for

the horizontal velocity and the free surface elevation. In the derivation, the flow

is not assumed irrotational, the horizontal velocity is assumed constant over the

depth and the vertical velocity variation is assumed linear. Interestingly, the fully

nonlinear version of the standard Boussinesq model (with depth average velocity)

5



given in Mei (1989) has the exact same form as Serre's equations, with the depth-

averaged velocity replacing Serre's constant-over-depth velocity. Exact solitary

wave solutions of Serre's equations were found by Su and Gardner (1969) and

Seabra-Santos et al. (1987), and the extension to variable depth and 2-dimensional

horizontal coordinates was presented by Seabra-Santos et al. (1987), where the

transformation of solitary waves over a shelf was investigated.

Green et al. (1974) and Green and Naghdi (1976) derived a family of mod-

els which became known as Green-Naghdi (or GN) models. GN is a very general

theory whose only assumption is that the vertical and horizontal velocities are

polynomials of order N and (N - 1), respectively. There is no assumption re-

garding irrotationality, nonlinearity, or even dispersiveness (not directly, at least).

With N = 1, GN recovers Serre's model (Kirby, 1997). By a different method,

Shields and Webster (1988) derived GN equations and investigated several so-

lutions including periodic and solitary wave properties for N = 1, N = 2, and

N = 3, and a variable depth numerical implementation of the unsteady model

with N = 2. The results agreed well with laboratory measurements by Hansen

and Svendsen (1979). Other applications of GN models can be found in Demir-

bilek and Webster (1992) and Webster and Wehausen (1995).

1.3 Present Model and Dissertation Outline

Although existing Boussinesq models have relatively accurate linear disper-

sion relationship and no weak nonlinearity limitation, the approximation to the

vertical profile of the horizontal velocity (or velocity potential) variable is only

a second order polynomial, which leads to a poor representation of the internal

kinematics in intermediate to deep water. The inaccuracies are even more evident

in the vertical velocity, which has a linear depth dependence. To overcome this
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problem, we propose a Boussinesq model which approximates the horizontal veloc-

ity (or velocity potential) by a fourth order polynomial in the vertical coordinate,

and consequently a third order polynomial for the vertical velocity is achieved.

In order to obtain a (4,4) Pad6 approximant for the exact linear dispersion rela-

tionship, a new dependent variable is introduced as the weighted average of the

velocity potential at 2 different elevations in the water column. Since the weight

and the locations at which the new variable is defined are arbitrary, they can be

chosen so that the (4,4) Pad6 approximant is achieved. The resulting model is

a fully nonlinear fourth order (in terms of vertical polynomial approximation to

the velocity potential) model with (4,4) Pad6 approximant as the linear dispersion

relationship. The model does not include wave breaking or bottom friction effects.

The outline of the dissertation is now presented.

In Chapter 2 we derive the model starting from the full potential flow

boundary value problem for an inviscid, incompressible fluid. A pair of coupled

equations approximating the conservation of mass and momentum is obtained for

the free surface elevation and the average (as defined above) velocity potential. A

three-equation model is then derived for the free surface elevation and the average

horizontal velocity vector.

In Chapter 3, we analyze some analytical properties of the model, includ-

ing linear dispersion, where we obtain the (4,4) Pad6 approximant for the dis-

persion relationship, second order Stokes-type interaction in a random sea, where

we present the model's ability to predict super and sub-harmonics transfer co-

efficients, and third order interactions in a narrow banded sea, where we derive

the model's amplitude dispersion coefficient and also its Schr6dinger equation

governing the propagation of the envelope of wave groups.

A numerical implementation of the 1-dimensional version of the model

7



derived in Chapter 2 is presented in Chapter 4. Wave generation inside the domain

and wave absorption by sponge layers to simulate radiation boundary conditions

are also discussed and several examples are shown.

In Chapter 5, we apply the numerical implementation of the model to the

propagation of solitary waves over both constant and variable depth. Several

solitary wave properties are discussed and compared with other models' results.

In Chapter 6, we compare the model's predictions with data sets from two

distinct laboratory experiments of regular waves propagating over a submerged

bar. The results are also compared with WKGS model.

The conclusions and recommendations for future work are presented in

Chapter 7.
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Chapter 2

DERIVATION OF FOURTH ORDER FULLY

NONLINEAR MODEL

In this chapter we derive a fully nonlinear Boussinesq-type model based

on a 4 th order vertical polynomial for the velocity potential. A set of equations

for a velocity-type variable is then given. We assume the fluid is inviscid and

incompressible, and the flow is irrotational, so that a velocity potential 0 exists

and the velocity field can be written as:

u = V 3A, (2.1)

where the fluid velocity vector u = (u, v, w), and q are functions of the spatial

Cartesian coordinates x, y, z and time t, and V 3 is the 3 dimensional gradient

operator V3 - (0/Ox, O/Oy, O/Oz).

The full boundary value problem for potential flow is given in terms of

nondimensional variables by

0 + /,2V20 = 0; -h < z < Sr (2.2)

0 +P2 Vh'V¢ = 0; z=-h (2.3)

+ + (,70+ 1 0; z =: (2.4)

7 + V.v- ¢ 1 = 0; z=SJ7 (2.5)
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x and y are the horizontal coordinates scaled by a representative wave number

ko = 27r/Lo, where L0 is a wave length, z is the vertical coordinate starting at the
still water level and pointing upwards and h is the water depth, both scaled by a

typical depth h0 . q is the water surface displacement scaled by a representative

amplitude a0 . Two dimensionless parameters are apparent: J = ao/ho and y 2 =

(koho) 2. Time t is scaled by (ko(gho)1/ 2)- , and q, the velocity potential, is scaled

by 6ho(gho)1/2 . g is the acceleration due to the gravitational field, and V is the

2-dimensional horizontal (Xi, y) gradient operator.

Integrating (2.2) over the water column and using (2.3) and (2.5), we obtain

a mass conservation equation

77t + V. M = 0; M = f i Vodz. (2.6)

We now proceed to derive model equations for waves over an arbitrary bottom
h(x,y), and assuming S = 0(1) and O(tt2 ) << 1. We assume an Nih degree
polynomial approximation for € in the z coordinate:

NEN("O.(X1, 01t) (2.7)

where

=(h +z), (2.8)

are functions of the horizontal spatial coordinates and time, and are to be
determined. By taking the limit of (2.7) as C - 0, it is clear that 0o is the
velocity potential at the bottom ( = 0. Substituting (2.7) into (2.3), we obtain

an expression for 01 in terms of 0o:

1 -- -GVh . Vqo, (2.9)

10



where G - (1 + j 2 VhI2)-i. Since we are seeking an asymptotic approximation

for € in terms of the parameter small parameter p2, it would be consistent if we

expanded G in a binomial expansion around M2 = 0. However, we choose not to do

this in order to maintain the positive definiteness of this quantity as the bottom

slope becomes steep. Substituting (2.7) into (2.2), and equating coefficients of like

powers of ( to zero, we obtain the following recursion formula:

(n + 2)(n + 1)0,+2 + 12 [(n + 2)(n + 1)1Vh120,,+2 + (n + 1)V 2hAn+I

+ 2(n + 1)Vh. Vqn+l + V2nI] = 0 (2.10)

We now use (2.9) and (2.10) to obtain 02, 03, ... , in terms of 00. The series is

truncated at N = 4, yielding:

0 = €0-_P2 (GVh.V~oO+ 1GV20(2)

+ P { ý[G22 ~ V40 + GVh -V (GVh.- V 0)j] ~2

+ [.G 2V2 hV20o + 1.GVh -V (GV2i, 0)

6GV2 (GVh. V~o)] (3+ 1GV2 (GV20 0 )41 (2.11)

+ 6 1 +4 (21G

Commensurate with the extension of the velocity potential to 0(/t4 ), we seek to

derive a set of model equations having a corresponding dispersion relationship in

the form of a (4,4) Pad6 approximant (Witting, 1984) representing the approxi-

mation
tanhp_ 1 + (1/9)p/2 + (1/945)p 4 +0(/ 6 ) (2.12)

PI 1 + (4/9)/j2 + (1/63)/_4

For the case of approximations retaining terms to O(p 2 ), the goal of obtaining the

corresponding (2,2) Pad6 approximant is achieved by redefining the velocity poten-

tial in terms of the value of the potential at an elevation z, = h[(1 +2a)1/2_ 1];a =

11



-2/5 and using the resulting reference value 0. = O(z•) as the dependent vari-

able; see Nwogu (1993), Chen and Liu (1995) and Kirby (1997). This procedure

is not adequate for a (4,4) Pad6 approximant, as shown in Appendix A. Instead,

we define a new dependent variable

S= 0ea +- (1 -- P)Ob (2.13)

where 0,a and 4. are the velocity potentials at elevations z = za and z = Zb,

and P is a weight parameter. Relationships between these parameters to give

the appropriate dispersion relationship will be presented in Chapter 3. q may be

written in terms of qo using (2.11) yielding:

00 = P-2 (AhGVh. V~ O+lBh2GV20o)

+ I 4{Bh2 [1G2V2hVh. V4o + GVh. V (GVh. Vo)

1
+ Ch-3 1[ (hG+ , ) 22W0 + G (1 - V )GV2]0 2)

1GV2 (GVh + -D) h + I -4  GV 2 (V2 $ (2.14)

where

A 4fl(h±+z.)±+(1 - )(h +Zb)] (2.15)
h

h2j~ [/3(h + Z.)2 + (1 - 0)(h + ZbYJ (2.16)

1 [,3(h + Za) 3 + (1 - ,0)(h + Zb)3] (2.17)

1 [0(h + Z.) 4 + (1 - 0)(h + Zb)4] (2.18)

Inverting (2.14) gives a formula for Oo in terms of 4 which is substituted into

(2.11), leading to an approximation to the full velocity potential in terms of 0:

0= ý+ L [(Ah - () Fi(q$) + (Bh 2 _ (2) F2(ý)] + IL4 [(Ah - () F3 (4)

+ (Bh2- _.2) F 4 (,) + (Chs3- _3) F5(,5) + (Dh4 - .4) F 6(,)], (2.19)

12



where

F,(b) GVh. Vý

F2()- 2GV2k

- 24F3 1,) Vh. V (Ahvh Vý) + 1Vh. V (Bh'2v)

22F4(ý) 1V 2 (Ahhvj, -Vý) + lv2 (2'V2)

2 ~VhVh -Vý -Vh -V (Vh -Vý)

F5 (4) 1 VV2 Wý 1 Vh -V(V2)1 ~V2 (Vh -Vý)
636

F6 (v) I (V2 V (2.20)
24

By substituting (2.19) into (2.6), and neglecting terms of O(y6) and higher, we

obtain the approximate conservation of mass equation:

V= -v M, (2.21)

where

M = HV 2HI[A-1 ,ý B ' 2ý]V

+ (Ah - H)VF1 (q$) + (Bh2_ H 2) VF 2 (k)}

+ P 4 H{I[(A -1) F3 (b)±+2(Bh -H) F4Gk

+ 3 (Ch2 _H F5(q5) ±4 (Dh3 _H~ F6($)] Vh

+ (Ah - H) VF 3(q) + (Bh2 2_ ) 2VF 4 (q$)

+ (Ch3 _- VF 5 (ý) + (Dh4 -H )VF6 ()} (2.22)

13



and H = h + S77. Substituting (2.19) into (2.4) and neglecting terms of O(Q 6) and

higher, we obtain the approximate Bernoulli equation evaluated at z = sq:

71 + ýt +i-P2 (Ah - H) Fi(bt) + (Bh 2 - H2) F2 (ýt)]

+ P 4 [(Ah - H) F3 (ck) + (Bh2 - H2) F4 (q5t)

+ (Ch 3 - Hi3) F,(0t) + (Dh 4 - H 4) F6 (sbt)]

+ ýIq + 2Vq$- V [11 {(Ah - H) F1 (ýb) + (Bh 2 - H 2) F2 (4)}

+ Pt { (Ah - H) F'3(q$) + (Bh 2 - H 2) F4 (ýb) + (Ch 3 - H 3) F5 (q5)

-+- (Dh4- H4) F6(4)}

+ P V {(Ah - H) F 1(1) + (Bh2 - H 2) F2 (4)}12

+ P2 [F1(ý) + 2F2 ()] 2 + 2P 4 [F3 (ý) + 2HF 4 (ý) + 3H 2F5(q)

+ 4H3F6(G)] [F1(4) + 2HF2 (q)] = 0. (2.23)

The pair of equations (2.22) and (2.23) form a fully nonlinear Boussinesq-type

model based on a velocity potential-type variable, ý. We now define a velocity-

type vector:

fi(x, y, t) = 0 [V¢] =" + (1 - i) [V¢]z:b (2.24)

The relationship between fi and ý can be found by inverting the gradient of (2.19)

and substituting into (2.24), and is given by

Vý = _i- L2Vh[(A-1) F21 + 2(B- A)hF22]

-- t 4 Vh[(A-1)(F 41 + F 43)+2(B-A)h(F 42 + F 4 4 )

+ 3(C-B)h2F45 +4(D-C)h3F46], (2.25)

where

F 21(fi) - GVh.fi

14



F22(f) -GV.fi
2

1F42(fi) -2V 2h[(A-1)Vhfi +(B-A)hV.fi]

1-x7 (AhVh2 -) + 12 -( hV -)
F 4 4 (fl) 2 hV (2

- !V2hVh. - i V Vh. V (Vh. Vi)22

F45 (l) IV2 hV.-f 1 Vh.- (V. - ) - -V2 (Vh. -f)
6 3 6

F 46 (fi) -2V 2 (V.4i). (2.26)

Now we substitute (2.25) into the expression (2.22) for M, and into the gradient

of the Bernoulli equation (2.23). The resulting set of evolution equations are the

approximate conservation laws using the velocity-type variable fi, and is given by

(2.21) with:

M = H +l + [(Ah - H) (2VhF 22 + VF 21 ) + (Bh2 - H-) yF 22]

+ P,4 [(Ah - H) (2VhF 4 2 + VF 4 1 + 2VhF 44 + yF 43 )

+ (Bh2 H i (yE 42 + 3VhF45 + VF44 )

+ (Ch3 H- (4VhF46 + yE 4 5) + (Dh4 _ H 4 ) VF46] }1 (2.27)

for mass conservation, and

u= = -V7- 5v (jIfi) + rl (1, iat) + r2 (7, fl), (2.28)

for momentum conservation. U, F1 , and F2 are given by

U + fi+P2 [(A - 1) h (2VhF 22 + VF 21) + (B - 1) h2VF 221

15



+ 4 [(A - 1) h (2VhF 42 + VF 41 + 2VhF 44 + VF 43)

+ (B - 1) h2 (VF 42 + 3VhF 45 + VF44 )

+ (C - 1) h3 (4VhF46 + VF45) + (D - 1) h4VF 46] (2.29)

F1  ~ 2v[77F 2,, + (2h? +7 2 F22 1]

+ , 4v [7 (F41, + F43q) + (2h? + 72) (F42 t + F44t)

+ (3h2, + 3hq 2 + 773) F4 (4h + 6h2 2 + 4h?3 + 74) F4,,] (2.30)

'r 2  P 2S,7 {i . [(Ah - H) (VF21 + 2VhF22) + (Bh 2 - H 2) yE 22 ]

+ 1 (F 21 + 2HF 22)2}2 1

- 1 4SV {If. [(Ah - H) (VF41 + 2VhF 42 + VF43 + 2VhF 44)

+ (Bh2 - H2) (VF42 + VF44 + 3VhF45)

+ (Ch 3 - H 3) (VF45 + 4VhF46) + (Dh~ 4 H4 ) VF461

+ ' (Ah - H)) (VF 2, + 2VhF 22 ) + (Bh2 - H2) VF 42 22

+ 1 [(F21 + 2HF22) (F 41 + 2HF 42

+ F4 3 + 2HF 44 + 3H 2F 4 5 + 4H3F 46)]} (2.31)

Once fi is known, the actual velocity field can be computed from substituting

(2.25) into the gradient of (2.19):

(u, V) = f, + IL2 [(Ah - () (yE 21 + 2VhF 22) + (Bh 2 _ (2) VF 221

+ P4 [(Ah - () (VF 41 + 2VhF 42 + VF 43 + 2VhF 44)

+ (Bh•2 _ 2) (VF 4 2 + VF 44 + 3VhF 45)

+ (Ch3 _ (3) (VF 45 + 4VhF 46 ) + (Dh4 - (4) VF 46 ] (2.32)

W = _P2 [F21 + 2CF 22] - / [F41 + F43

+ 2C (F42 + F44 ) + 3( 2F45 + 4(3F 461 (2.33)

The free parameters 3, za, and Zb will be considered in Chapter 3, when we study

16



the dispersion properties of the model. To obtain a set of 0(pt4 ) weakly disper-

sive, weakly nonlinear equations with 0(J) = 0(/t2 ), terms of 0(S 2 •9 ,S 3
/t

2,3jp4,

S2/24,S3 •S 4•64,4 5p4) should be neglected. The assumption 0(J) = O(It2) is used

in the standard Boussinesq model. To recover the WKGS model, one must ne-

glect O(/p4) terms while keeping all terms proportional to powers of J, and setting

,3 = 1, and with Nwogu's aN being related to A and B by

A =V

B = 2 aN + 1 (2.34)

and ft being replaced by WKGS's u,.

Equations (2.21) with (2.27), and (2.28) form the 2-dimensional version of the

O(p•4) fully nonlinear model . A one-dimensional version in x can be obtained

by assuming fi -=i, and V a/ O/x. We, hereafter, shall refer to the O(p 4 ) fully

nonlinear model as FN4 and the 0(p4 ) weakly nonlinear model as WN4.

17



Chapter 3

ANALYTICAL PROPERTIES

3.1 Linear Properties

In this section we consider the flat bottom linearized version of the model

governing ?7 and ý derived in Chapter 2, and analyze several linear properties of

the model.

3.1.1 Dispersion

Neglecting all terms containing J and assuming a flat bottom (h = ho = 1)

in (2.22) and (2.23) we have the following linear equations. Mass conservation:

2~ ++2vv
t+ . 2 (B D

S1(B2  + 1 V 2V 2V 2 ; = 0 (3.1)
+ 4 \ 3 6 30/

Bernoulli equation:

77 +

+ L (B - B - D + v2v = 0 (3.2)

4 J 6 )V

18



To analyze the dispersion properties of these equations, we assume the following

general solution to the equations:

-7 = aei(x-Wt) bei(x-t) (3.3)

where w is the angular frequency nondimensionalized by ko(gho)'/ 2 , a and b are

amplitudes, and i = V/C-T-. Substituting (3.3) into (3.1) and (3.2) we obtain the

linear dispersion relationship for the model:
1 - 1(B - ) /'22+1( _D+_)1

t~2 _2 3_.. 4 302 B

LL) - 1)M2 + • (B - B - - + 1) M,4

The expression (3.4) resembles the remarkably good (4,4) Pad6 approximant to

the exact linear dispersion relationship w2 = tanhy1 /pi (Witting, 1984). For (3.4)

to be the (4,4) Pad6 approximant, we set B = 1/9 and D = 5/189, and solve

(2.16) and (2.18) for parameters /3, za, and zb. Since we have 3 unknowns and 2

equations, there are an infinite number of solutions that give the desired values

of B and D. However, an arbitrary choice of /3 can give imaginary values of Za

or Zb or values lying outside of the fluid domain, causing these parameters to lack

physical significance. The relationship between /3, za, and Zb for a (4,4) Pad6

approximant is as follows:

Za = [i f 8/3 }1/2 ± + 11/21 1/2

a 9  1567(1 -/3) 1567/3(1-/3)1 -

Zb = [ 67(1 -- ) 8 -1 (3.5)

Figure 3.1 shows a plot of the real part of za and zb as given by (3.5). Notice that

values of /3 between 0.018 and 0.467 will give both Za and Zb to be real values lying

inside the water column. The remaining free parameter can be chosen to improve
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Figure 3.1: Values of za(O3) (solid), Zb(P) (dash-dot) as a function of weighting
factor 03 , corresponding to the (4,4) Pad6 approximant dispersion
relation.

depth dependent properties such as linear shoaling. This has not been done in

the present work, where we arbitrarily set /3 = 0.2, and substitute this value into

(3.5) to obtain z, = -0.4095 and Zb = -0.7726.

Figure 3.2 shows comparison between the standard Boussinesq theory (depth

averaged velocity), Nwogu's formulation, and present model with (4,4) Pad6 ap-

proximant dispersion relationship, of the ratio of the phase speed with Airy's exact

linear solution. It is clear that the present model has improved linear dispersion
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Figure 3.2: Ratio of phase speed with Airy's exact linear solution. Standard

Boussinesq (dot), Nwogu's (2,2) Pad6 (dash-dot), Present (4,4) Pad6

(dash).

properties over the already accurate Nwogu's model and closely reproduces the

exact solution through intermediate to deep water. Similarly, the linear group

velocity, defined as Cg = Ow/8k is shown in Figure 3.3 and the improvement over

Nwogu's model is even more evident.

Alternatively to the (4,4) Pad6 approximant, one could compute values for

01, Za, and Zb to minimize the errors in the linear phase speed and group velocity

over some depth range. This was the procedure used by Nwogu to obtain his
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optimized parameter a = -0.39. However, the authors found that the (4,4) Pad6

approximant is already sufficiently accurate for any practical purposes, and any

parameter optimization over a normal water depth range would result in minor

improvement.

3.1.2 Internal Kinematics

The internal kinematics of the present model can be obtained from (2.19).

For the sake of comparison with the exact linear solution, we assume flat bottom

with h = 1 and the linear theory solution = ex-wt. The flat bottom one-

dimensional version of (2.19) is:

+ 1=1 +-(B - ý)
2

"+ 2 (B2 - B( 2 
- + (4) axxxx (3.6)

We define a function fl(z) as the velocity potential given by (3.6) normalized by

its value at position z = 0, which is used as a common reference:

1- ! [B- (1+ z) 2 ] + I [B2 - B(_ + Z)2 
- D + jz)(3

fi(z) = (3.7)2 4- B6--- 6

The vertical velocity component w can be obtained by differentiating (3.6) with

respect to z. Similarly to fl, a vertical velocity profile function can be obtained

by defining f 2 (z) = w(z)/w(0):

2 [(1 + z)] + A4 [-B(1 + z)+ + 1
3-( 1(38

f2(z) 2 2 L 3(3.8)

Figure 3.4 shows comparisons of fl(z) between the exact linear solution given by

cosh[yi(1 + z)]/ cosh[pt], Nwogu's model and the present model, for various values of
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relative water depth y. Notice that for moderately shallow water, the two models

reproduce the exact solution quite well; as y increases, Nwogu's model starts to

deviate strongly, developing a reverse flow pattern near the bottom at Y -- 3,

while the present model remains very accurate. Only at quite deep water the

present model starts to deviate considerably from the exact solution developing

an inflection point at y - 4.24 and a reverse flow at p ý 6.07.

Figure 3.5 shows results similar to Figure 3.4 for f 2(z). The equivalent

exact linear solution is [ sinh[p (1 + z)]/ cosh[pi]. Notice that Nwogu's model has a

linear vertical profile for w, a poor representation in intermediate to deep water.

The present model stays close to the exact solution for a wide range of P. A reverse

vertical flow starts to appear at p - 6.07, where the horizontal flow develops the

inflection point. Finally, Figure 3.6 shows the ratio to the exact linear solution

f3A = p tanh(/-) of the ratio between vertical and horizontal velocities 0,/0. at

z = 0, f3([z), for the present model, and Nwogu's model. The expression for f3

can be obtained by dividing the numerator of (3.8) by the numerator of (3.7):

f3 w(z = 0) 3 (3.9)
u(z=0) - [B 1] + L4 B 1]

The present model agrees better with the exact linear solution than Nwogu's

model for a wide depth range.

3.2 Nonlinear Properties

In the previous sections we have seen that the proposed model has excel-

lent linear dispersion properties as well as greatly improved representation of the

internal flow kinematics. It is useful to analyze some of the nonlinear properties

of the model by using analytical tools such as Stokes' type asymptotic expansions

24



0 0

-0.2 -0.2

-0.4 -0.4
z /0.

-0.6 -0.6

-0.8 -0.8 /

-1 -1
0.2 0.4 0.6 0.8 1 -0.5 0 0.5

jit=3 r!2 p-t=27c

0 0

-0.2 -0.2-

-0.4 -0.4-z /. ,{ .

-0.6- -0.6/ I/

-0.8 -0.8

-1 -1
-0.5 0 0.5 1 -0.5 0 0.5

f fi,

Figure 3.4: Normalized vertical profile of linear horizontal velocity for several
values of it. Exact (solid), Nwogu (dash-dot), Present (dash).

25



I-t-7/2
0 . "0.. . "

-0.2- -0.2.

-0.4 -0.4
Z

-0.6 -0.6/

-0.8 -0.8

-1 -1 /

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8

=31U/2 g=20 - 0 -1 -. /

0 0-

-0.2 - / -0.2 .. -
//

-0.4 / / -0.4 /
Z/

-0.6 -0.6-

-0.8 I -0.8 /
, I

-1 -1
-0.5 0 0.5 1 -0.5 0 0.5

f2  f2

Figure 3.5: Normalized vertical profile of linear vertical velocity for several val-
ues of y. Exact (solid), Nwogu (dash-dot), Present (dash).
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and multiple scales expansions, and, since these types of analysis have been ex-

tensively applied and studied for the full boundary value potential problem, we

can have an idea of how well the nonlinear version of the present model would

perform by comparing some of its nonlinear properties with those of the full prob-

lem, and also with WKGS and Nwogu's model, keeping in mind that a numerical

implementation of WKGS model has already been tested with a good degree of

success.

In the following sections we investigate 0(S) nonlinear interactions in a ran-

dom sea, and 0(62) evolution of a narrow banded spectrum wave train, governed

by Schr5dinger equation.

The constant depth versions of the evolution equations for q and 77 are:

77t + V{H[Vk + e (B- H') Vv 2 ý
2 3

+ (BH2 - + H

6 3)V30~

7++ V 2V2 (B -2)VH+ (B 2 _ -BH 
2 + 1H4) V2V•2/4 61

+ Ti

+ V (BH B - H) 2 =
22



3.2.1 Second Order Interactions in Random Sea

We will now look at generation of super and sub-harmonics by second order

Stokes-type interactions. It is well known that in intermediate and deep water the

first nonlinear correction of a linear wave solution is a set of bound waves (waves

that are forced by the nonlinear interactions), also called the superharmonics (re-

sulting from sum-wave interactions) and the corresponding subharmonics (result-

ing from difference-wave interactions) (Hasselmann, 1962). These bound waves

are proportional to products of the amplitudes of solutions to the linear equations.

The constants of proportionality (which are functions of the local depth) will be

referred to as transfer coefficients. Nwogu (1993) has investigated the generation

of these bound waves in his extended Boussinesq model and found qualitatively

reasonable agreement with Stokes' theory. Madsen and Sorensen (1993) have

found similar results. Kirby and Wei (1994) extended Nwogu's model to full non-

linearity and found that the retention of terms proportional to 6 1t2 (which are

neglected in Nwogu's model and the standard Boussinesq model) is essential to a

more accurate prediction of the transfer coefficients to the level of accuracy im-

plied by the order of retained dispersive terms in the original model equations.

Here, we derive the transfer coefficients for the present model and compare to

results from previous models.

We proceed to investigate nonlinear properties of our model by introducing

the perturbation expansion:

7q = qo + 6rq + j 2
772

S---- 0 + S 1 -'+ - 20 2 (3.12)

into (3.10) and (3.11), and ordering the equations by powers of 6. At each order

29



O(6n) we obtain:

77tin+l Llon = F.

?In + L2 nt = Gn (3.13)

where L1 and L2 are the linear operators:

L, = V2 + L(B -)V2V2

/~2 3D I
+ B2 B D + _1 v2V2 (3.14)

4 ( 3 - 6 30)

/2
2= 1D +(B-1)v2

(B - B- 6 + 6)V (3.15)

and the forcing terms are given by:

Fo =0

Go 0

F,1  -V . (7oo) - ý(B - )V . {ýV (V20o)}

- {(o2o,+ •- V.o{?70Vo(V÷V(qo))}
1~ (V~o) 2 + - {?o2kt-(B-1V- v2o Vqo

-z D 1VVro
+I(B-o1)2V (v2+o) . V (V2) 0) + 2 (B-1)(V2•so) (V2V2 0o)}

G,- 2- (B1) 2 1v -(V B - 1)} . V (V

+ V. {4o• (2_ oB)}]

S[(B- B- + 1) [v7 {. V (V202)°)}- + (B {(20  (V2V20i)}1

- (B - v)•2 , {f~ov (72v72+i)}]
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G2 -= - l -V {-2 [71V2¢ot + TIoV2¢1t]

+ (B - 1) [Vo . V (V20 1 ) + V.V (V2)]

+ 2V 2 qOV 2 q _- 7orV2 0ot - 2 ?JoV~o V M oo + 2rqo MV2o) 2

P' {-2 (B - 1) [,V2V2••o + oV2V2••4t

+ (•2 - B - B+ I) [Vo 1 . V (V2V20 0) + Vo0 . V (V2V2i1)

+ (B - 1)2V (V20 1) . V (V20 0 )

+ 2 (B - 1) [(V20 1) (V2V20 0) + (v2oo v2v2,)]

-(B - 1)77 2,7 2,720 - 2 (B- 1?o7 - V (v~vo 0

- 2(B - 1)qoV (V20 0) . V (V20 0) + 4 (B - 2) (,72 0) (,7,720()}

We now assume the following random sea as the solution to the 0(1) problem:

770= Ean cos On; o0 = Ebnsin On; (3.16)
n n

where a, and bn are nondimensional amplitudes of the functions Tjo and 4o, On=

kn • x - wnt, kn is the n-component wavenumber vector nondimensionalized by

k0, x is the horizontal coordinates vector nondimensionalized by k0 , wn is the n-

component angular frequency nondimensionalized by ko(gho)'/ 2 . Substitution of

(3.16) into the 0(1) set of equations gives a set of n relationships between W12 and

kn= Ikni:

12 1 (B 2 k2 +1 B2 B D _+ 4 4n

- 2 kn_ B 30) P 3kn (3.17)
2 ~ 1 6_ 6D

We also find a relationship between an and bn given by:
Wdn

bn-= L)a, ; (3.18)
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where

& = ki Ekn B-- +p 4n (B +_ (3.19)2 3 43 6 3

Following the standard perturbation technique, we substitute the 0(1) solution

(3.16) into the right-hand-side of the 0(J) equations (3.13) to find the forcing of

the 0(J) problem. The forcings F and G in the mass and dynamic equations

respectively are:

1F • = S amal {YTt sin(•bt + •bm) + .",• sin(q~, - m)}

1= 5 amal {91 cos(Ol + 0Im) + g- 1 cos(bl -- 0,,)l

where

=wmk?-Wlk +(W+Wm)(k/kn) (3.20)

-klkmWIm [,wm(kt, k.) +/_2 {w2k2kiIf,

m' k km r K -( kM(k Wiikk

+ W2tk2kmIKm + (B- 1)wLwm(k + k)(kn.km) -w±wk2k2

+ Pi 4 (B - 1) (';2k 4 kmIC + Lw,2k 4k, K)

B 2( B -D + 1)(k. km)W W(k +k4)

- -(B - 1)2w,Lmk2k2(ki. kin)
4

TI Lomwjk 2k 2(k 2 + k 2) (3.21)
1 (B 3j MJM I

Equation (3.20) is identical to the full Stokes' theory result, except for the approx-

imate dispersion relationship. Assuming O(p 2) << 1, and using the dispersion

relation and binomial expansions to eliminate Kt and K,, equation (3.21) can be

rearranged to:

l k- - km + 2 r (W
2  ) ±t 2IwL} + +(,•) (3.22)
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which is, again, formally the same as the full Stokes' theory result but with the

approximate dispersion relationship.

The forced solution for 771 can be obtained by solving (3.13) and is given

by:

771= - ama,{l i+, cos(q5 + 0.) + 7W-, cos(O1 - 0.)} (3.23)

ml m

4I (w'n)- k)2 T m 1  (3.24)

__ (B ( [-1 4(B _D+_) kl

1 - -L2(B - 1)(k:'1 )2 + -- (B2 - B - D + 1) (k±1 )4

k±Iki + kmI, w-l=wi±wm (3.26)

+

-M11 7- are respectively the super and subharmonics transfer coefficients of the

interaction between the (1, m) pair of waves. Figures 3.7 and 3.8 show comparisons

of the ratio of 7-/( to Stokes' solution, for Nwogu's model, WKGS model, and the

present model. Note that the poor representation of these coefficients at small

p in Nwogu's model is due to the assumption of weak nonlinearity, as discussed

by Kirby and Wei (1994). The present model predicts superharmonic amplitudes

very accurately over a wide range of water depths. The asymptotic representation

of subharmonic amplitudes is also more accurate than in previous models, but the

new solution deviates more rapidly from the exact solution than do the results of

the previous models. Using the rearranged form of 9±1, given by (3.22), a much

better agreement is achieved. Plots of the rearranged form of H•t1 using (3.22).
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Figure 3.7: Ratio of approximate superharmonic transfer coefficients to Stokes'
solution. Stokes' theory (solid), Nwogu (dot), WKGS (dash-dot),

Present (dash), Present rearranged (thin dot, indistinguishable from
exact).

can also be found in figures 3.7 and 3.8, and the lines are indistinguishable from

the full Stokes' theory results.

3.2.2 Third Order Interactions in Narrow Banded Sea

We now extend our analysis to third order interactions by deriving a cubic

Schr6dinger equation, which governs the evolution of wave envelope resulting from

the propagation of a narrow banded spectrum wave train, for the present model

and comparing some of its property with the full boundary value problem, and also
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with the WKGS fully nonlinear second order model. A more detailed derivation

of the equation for the present model in given in Appendix B. The derivation is

very similar to the derivation for the full boundary value problem, which can be

found in Mei (1989) and is done using a standard WKB multiple scales approach.

Here we outline the derivation.

A narrow banded wave train with carrier wave number k0 and angular

frequency w is as'sumed to be propagating mainly in x direction. At third order,

with the expansion (3.12) only, the perturbation is singular, since the forcings are

resonant at that order. In order to avoid this problem, the independent variables

need to be "stretched", so the time and space variables are split into "fast" and

"slow" contributions:

t = t'+&I'+S2t'=t'+T+XT2

X = X! + SX! +• S2X! = X, "+ X1 +• X2

y = jy'±62y' = Y Y 2  (3.27)

Notice that y has only slow scale contributions. We expand the dependent vari-

ables as:

77 = J711 + J2772 + J 3
77 3

S= 601 + 6202 + 5343 (3.28)

We then substitute (3.27) and (3.28) into (3.10) and (3.11), and order the

equations in a manner analogous to what was done in the previous section. We

assume the solution to each order to be of the form
n+1

?I = E 7lnm(X1i X 2, Y1I Y2,T 1, T2)eM(X'Wt')
m=-(n+l)

On= E On.(X1,,X2, Y1,Y2,T1,,T2)eiM(X'-W•t') (3.29)

m3-n
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We then seek an equation for the wave envelope, the leading order wave amplitude,

in X1 and T1 by relating the coefficients (amplitudes) in (3.29) of each order to

the ones of the previous order. After some algebra, the following equation is found

before the substitution of 010x 1 and €1oT1 :

AT2 + CgAx 2 - z W"Axx, - iCgAyiyi + icrl JAl 2 A

+ i[J~OJOJ +1 + C3 /u2 +0C41 4 _-j2 W2 (1 +±Cl2010T, 0 (.30+ iS/1{4101  l+ 32w (1 + C3M2 + C4y4) 0

Where A = 2•01 is the envelope amplitude, w" = a2w/k 2 , and expressions for C1,

C3, and C4, are given in Appendix B. The coefficient ui is also given in Appendix

B for both the present model and the full potential problem. The final equation

for the wave envelope A can be obtained after some more algebra and is given by
_ ~ + 12 CA, 1--+7

A,- _w"A• -+ iaSy 2 lyAl 2 A (+-yl(r)A =0 (3.31)

Where 7 = 6T1, and , = - CgTi. Without the last term (see Appendix B) and

neglecting Y1 derivatives, equation (3.31) is the nonlinear cubic Schr6dinger equa-

tion. The last term can be absorbed by defining the transformation A' = Aei f "Y, dr.

The coefficient a is the sum of contributions from the wave-wave interactions Ol,

and wave-current interactions U2, also given in Appendix B for the present model

as well as for the full potential problem. If the current component (terms involv-

ing 01o) of equation (3.30) is neglected, and we assume uniform unidirectional

propagation (neglect all spatial derivatives), equation (3.30) can be integrated in

T2, and the solution for A is given by:

A = aoe-i(o'ja2T2) (3.32)

where a0 = JAI. The leading order solution of 71 is, then:

rq = ao cos(kx - wat) (3.33)
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where

Wa - + (Jy) 2'ca 2  (3.34)

The coefficient a1, therefore, characterizes the amplitude dispersion occurring at

leading order due to third order wave-wave interactions. Figure 3.9 shows compar-

ison of the ratio ol from the present model and from WKGS model to the Stokes'

solution to the full problem. Figure (3.10) shows a similar comparison for 0r2. In

both cases, the present model appears to have a better asymptotic approximation

to the full problem, with excellent agreement in shallower water and acceptable

agreement in intermediate to deep water.

Another important result that can be derived from a linear stability anal-

ysis of (3.31) is that concerning the stability of a Stokes' wave train to sideband

perturbations (see Mei, 1989). It is well known that, according to such analysis,

a permanent form Stokes' wave is a stable solution of (3.31) only in the range

where w" and o, = U1 + a2 have the same signs. A comparison of the ratio of w" to

Stokes' solution between the present model and WKGS model is shown in Figure

3.11. Notice that the present model has much better agreement of wit with the

full model, compared to WKGS model, in any depth up to deep water. Notice

that the change in the sign of w" in WKGS model at around p = 3.8 will cause

a change in the stability of the model, as long as the sign of a remains correct,

which is the case for both Boussinesq models. For the full boundary value prob-

lem, there is a change in the stability at It t 1.36, when a becomes positive (w"

remains negative at all depths). For water deeper than this value Stokes' waves

are unstable and any sideband perturbation will grow and modulate the solution.

A comparison of a (around the zero crossing) between the present model, WKGS

model and Stokes' solution to the full problem is shown in Figure 3.12. In the

present model, a changes sign in shallower water than in the full problem, the
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Figure 3.9: Ratio of Schr6dinger equation's cubic term coefficient to full prob-
lem's solution. Wave-wave interaction contribution. Full boundary
value problem (solid), WKGS (dash-dot), Present (dash).

reverse being true for WKGS model. However, this is hardly a problem since in

shallow to intermediate water, the time and space scale in which these modula-

tions take place are much longer than those associated with the effects of depth

changes. Also, it is not clear whether or not the discrepancies at higher values of

y are only due to a bad behavior of the perturbation expansion.
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Chapter 4

NUMERICAL IMPLEMENTATION

In this chapter we present the numerical implementation of the FN4 (and

WN4) model derived in Chapter 2. The philosophy behind this scheme follows

very closely the one of WKGS, but extended to higher accuracy for consistency

with the higher accuracy of the model itself. The time integration is done using a

high order predictor-corrector scheme and the spatial derivatives are approximated

with high order finite differencing. The order of accuracy in all the discretized

terms in the equations is such that the truncation errors, which contain dispersive-

type quantities, are always smaller than the highest-order dispersive term in the

equations. This was done to assure that even when using relatively large grid

spacing, the dispersion introduced by the error due to the discretization will not

overwhelm the dispersive terms in the equations themselves. In WKGS, this is

accomplished by making the truncation errors of 0(p') when combined with the

term being discretized, assuming kAx = 0(y). Since the present model contains

0(p4) dispersion, more accuracy in the approximate derivatives is needed, so that

the numerical truncation leads to errors of order higher than 0(/t). Among

the several ways to implement the boundary conditions, we choose to use fully

reflective walls, with energy absorbing sponge layers used near the boundary,

in order to implement a radiation condition. This choice was made due to the

simplicity and efficiency of this type of boundary condition. With this kind of
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formulation, however, it is necessary to include some kind of wave generation

inside the domain. The wave generation is implemented by introducing a source

function in the mass conservation equation acting on a limited "source region"

conveniently placed in the domain.

We rewrite the one dimensional equations with the source function and the

sponge layers as follows:

7t -- -M . "-+- f,(Xt), (4.1)

Ut ~ 77,- ()x + rl q it + rF2 (7,f)- i~d(x), (4.2)

where M, U, Fl, 12 are the one-dimensional (in x) versions of the quantities

defined in (2.27), (2.29), (2.30), and (2.31). Later in this chapter we will discuss

the introduction of the two new terms in the system: f,(x, t), the source function,

and iifd(x), a dissipation term acting at the sponge layer(s). At this point, we

present the finite difference formulae and solution method to the equations above.

4.1 Discretization and Solution Method

In this section we present the formulas used to approximate the partial

derivatives and the solution method to the approximate equations. We discretize

the spatial coordinate x by: xi = iAx, (i = 0, 1, 2, ..N) and time t by: t3 =

jAt, (j = 0, 1,2, ..Nt). There are three basic steps in advancing the solution

by At in time: (i) the right-hand-sides of (4.1) and (4.2) are evaluated, (ii) the

equations are integrated in time to solved for r and U, (iii) ii is evaluated from

U. Since we use a predictor-corrector integration method and we have nonlinear

terms containing time derivatives on the right-hand-side of (4.2), starting at the

corrector stage of step (i), steps (i) through (iii) are iterated until convergence is

attained. We present each of these steps in the following subsections.
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4.1.1 Evaluation of the Right-Hand-Sides

As we already stated, the finite-difference approximations to the spatial

derivatives in the equations are done is such a way that the truncation error in

each term of the equations should lead to errors of order higher than 0(P4). Notice

that the momentum equation (4.2) contains first order time derivatives of ft in I'.

These time derivatives are evaluated in conjunction with the predictor-corrector

iterated scheme (presented later) by using a finite difference approximation with

values of i at times (j,j - 1,j - 2,j - 3,j - 4)At in the predictor stage and

(j + 1, j, j - 1, j - 2, j - 3, j -4)At in the corrector stage. The formulas for the time

derivatives at each of those j locations were obtained by expanding the variables in

Taylor series around each j, multiplying each expansion by a coefficient and solving

the system of equations resulting from setting the combination of coefficients of

the higher derivatives of t to zero (this is the standard procedure to find finite

difference formulas, and was used throughout this chapter). The formulas are:

j-4_ 1 (-3i + 16i 1 - 36-2 + 48i-3 -25i-4)+ O(At 4 )

i-3 1 ( _6_ -o +18i'- 3 fi-_3 -4) + O(At 4)

1,,- = t (-ft4 + 8i.' - 8i'-3 + + o(-t 4 )

12At \

i-2 1 ii - 18ii 2 + - 1 - O(LAt 4)
ut1 - 2At \ 3 3/

l2At1 (25i• - 48{- + 36€i- 2 - 16-i4 3i) + O(At4 )utfi -- 12At1 1 +

for the predictor stage, and

f_ _-4 1 (12i1+l - 75fi + 200i-1 - 300ii-j2
•ti 6OAt

+ 300 •i-- 137fi-4) + O(At5)
ft t j3 1 - (-3 + 20. - 60q.-' + 120fij<2

ut1  60At t Z

- 65•i• - 12i{-) + O(At5 )
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-i-2 __-2'-it_2 = (2O t 4+1 - 15ii + 60ii_1 - 20- i_60At

- 3o0-i + 3Ui-4) + O(At 5)

-1 (-3ft+' + 30io + 2oii-i- 6oi-•
uti - 60At

+ 15i�{- - 2ij-4 )+o(Ai')

= 6O 1 (12fii+' + 65i _ - 120 ii _1 + 600_i 2
u - 60A t

_ 20Oi-3 + 3Hi-4) + O(At5 )
-'3+1 1 (137.,+- 300H4 + 300fi-' - 200 i-2
fti 60At It

+ 75i<-3 - 12ft-4) + O(At5 )

for the corrector stage.

The formulas for all spatial derivatives in (4.1) and (4.2) at location iAx

and at time jAt are given below for centered and off-centered (near but exclud-

ing the boundaries, where boundary conditions are used) locations. We use the

variable ft as an example.

For derivatives appearing in terms of 0(1) we have:

centered at i:

fix . [45 (fi+ 1 U{-a --j 9 (ftj -•i2

- 60Ax i+ i- i+ 2 -

+ U.+3 - + O(Ax6 )i+ 1 i-3]
- 18Ox [270 (ftj 14 + ii) 27 (iaj 2 + fj2u~xiq= 180Ax2 + ii -

+ 2 ({i+3 + uj-3) - 490ii] + O(Ax5 )

off-centered at i = 1 and i = N - 1:

1 =~ 6OA-1[-10iN- 7 701,N-1 + 150ui,N2 - 100i3,N3
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+ 50i?,N_ - 15i3,N_ + 2ftN3 ] + O(AX6 )

f - 1 [137itN - 147fiN_1 - 255if,N_2 + 470i,N_3
UtXX,N-1 - 180Ax 2  02

- 2855,,N-4 + 9 3 U5,N5 - 13U6,N6] + O(Ax5 )

off-centered at i = 2 and i = N - 2:

,N-1 02UN - 24{'N1 - 3 5 U2N2- + S0U'N-3
-~,1 - 12Oij 1L'3N-

fL3 0 i , N _ + 8 fN _ ,- ]6, N . o] + O ( ,A X 6 )

_ - 1 [_13•,N- + 228H3,N_ _ 420iN_2 + 200i{,N 3

UXIN_ - 180Ax 2

+ 15U ,N4 - 12t,N_ + 2 N6] + O(AX 5 )

The "+" indicates that the expression should be positive for the points near the

left boundary (i = 0) and negative near the right boundary (i = N). This

convention applies for the formulas below as well.

For terms of 0(y 2):

centered at i:
f + o(Ax4)

[8 12ZAx 1 - ft 1) - i+ + O(A 4 )

=- 12A [16 (fitj~ - i4 1 ) + - - 30iif] + O(/Ax 3 )
fx.Tz- 12Ax2 -1)- '4+2 - j-2

_ j 1 [-13 (fij-I1 ftj1) + -8 (ft 2 - "j-2)

=xxx - 8Ax13i+ - + 8-
- (u+3 - u-)-490i] + O(Ax 4)

off-centered at i = 1 and i = N - 1:

,- 1 ,N- 100i,N_1 + 18i 4 ,N-2

3-1 + O(AX4 )

UxxlN1 = 12~x 2 [11u0,N - 20i 4 ,N_ ± 6ij,N_2
1,N-1 -- 12Ax2 01N
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3 t,N-3 - 4,N-.4] (X
" 1,N1 = ±-3 [-15igN + 56fiN1 - 83fi,N2 + 643ig,N-3

1,N-,N_ N-1+ 63i

- 29 4,N-4 + 8 U'5 ,N-5 U l6,N-6] (~

off-centered at i = 2 and i N - 2:

.ix N-1 :_ 1_A3 [--U,N-- 8HN-1 + 35u,_2 - 48fi,N3
0 N 2,N -213,N -3

+ 294,N-4 - 8-i,N-5+ U6,N- 6] +0(Ax 4 )

For terms of O(1U4):

centered at i:

= . (iiiI j1) + O(Ax 2)I, 2Ax (i+ 1- u_

f q- . (A +- 2ij + fi- ) + O(Ax)
X * 2AX2 + i

~ q 1 - -2 1) + ~ J

xxx "= 2X[3 -+ - i ui+2 - u{ 2 ] + O(Ax2 )

iiX = 1-X [-4(i+.1 + i__1) + if'+2 + uji 2 + 6ij + O(Ax)

off-centered at i = 1 and i = N - 1:

~ "12AX3 [_3u,N + 10fi,N-1 2,N-2

+ 6 U•,N-3 - i 4 ,N-41 O(Ax 2)
fi j" I [40,N -1+' f

~~xx~N1 = 1 A 4 - 4 U 1,N_1 + 6i{,N_2
Uxxxxl,N-1 -14Ax4'

-- 
4 ,N-3 + U4,N-4] + O(AZX)

For equation (4.1) all but the boundary points (that is, i = 1, ... , N- 1) are

evaluated. After the time integration is done (see next subsection), a boundary
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condition q., = 0 is applied at i = 0 and i = N. A 7-point off-centered derivative

of 77 is used and 71j+1 and 1jN+1 can be obtained as:

±j+ 1 (36 - 450q j+1 400 j+1
?lo,N -- 14 \ 1,- I 2,N-2 ÷ 3,N-3

2257+14 72q j-+1 1_q 6) +.O(AX 7 )-- '4,N- ÷"'5,N-5 t6,N-]÷0 x)

For equation (4.2), we only evaluate the terms at points i = 2,..., N - 2. The

remaining points do not need to be evaluated since at those points, the values of

Sare determ ined by boundary conditions. This is done w hen w e evaluate ii from

U, defined in (2.29), and the procedure will be explained later.

4.1.2 Time Integration

The integration method used is a 5th order predictor, 6th order corrector,

Adams-Bashforth-Moulton scheme. Once the dependent variables are known at

times (j - 4,j - 3,j - 2,j - 1,j)At, and the right-hand-sides of the equations

have been evaluated, estimates of both 71 and U at time (j + 1)At are made using

the predictor stage:

v~i = + At (1901Vii - 2774Vj_i Vj4 + vi+7-)•
+ 2616v~' 2 - 1274v?- + 251 iv 4 )+o(At6),

where index p stands for predictor. vj is either U or qj, and Vii is the right-hand-

side of the respective equation, at x = iAx and t = jat. With the estimate Uj+lp,

we evaluate iij+lp (see next subsection) then estimate the right-hand-sides of the

equations at tj+l, V?+lP, and iterate the corrector stage:

= +j At (475V'j+1P + 1427Vij - 798Vjji
1440

+ 482 - 173 i- + 27v-j-4) + O(At7 ),
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until the error between v4+1 and vj+lP (where, again, v applies here applies to

both q and U) is small. We define an error estimate for the iteration process as:

N [N j(+1-l j+1)2 1/2 + ,j(-1 +•_1)21 1/2

(771.P + i -(4.3)Ei• i=0 (-7,l )-2=0 (?i12 J

and require that Eittr be smaller than an arbitrary tolerance Terr. In all our

computations we used 10-9 < Trr < 10-12.

4.1.3 Evaluation of fi from U

Once U has been evaluated at t (j + 1)At for x = iAx, i' 2,3, ...= N -

3, N - 2, a system of algebraic equations can be written as

Amxnifm = Um, m = N - 3 (4.4)

where

c 2 d2 e 2  0 ... 0 0

N c 3  d3  e 3  ... 0 0

a 4  b4 C4 d4 e4 0 0

Amxm = 0 ... ... ... ... ... 0 (4.5)

0 ... aN-4 bN-4 CN-4 dN-4 eN-4

0 ... 0 aN-3 bN-3 CN-3 dN-3

0 ... 0 0 aN-2 bN-2 CN-2

fim and Um are the vectors containing the unknowns ii and U at i = 2,..., N - 2.

Each row of the system represents the finite difference approximation for the def-

inition of U(fi) (2.29). ai, bi, ci, di, ej are the coefficients appearing in front of ft

after the 5-point derivatives are substituted into (2.29), except for rows 2, 3, N-3,

N-2, where these coefficients are modified to accommodate the boundary condi-

tions given by ui, = i = 0. After solving the system for ft at i = 2, .. , N - 2, we
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use these conditions (with an off-centered 5-point finite-difference approximation)

to obtain

0,N "- 0

ft = 1 (114fi+_ - 56ij+1 + 11Uj4+N1,N-1 -- ,104 3,N-3 -- 4N4

The justification for using the boundary conditions U ft = u= 0 is to

guarantee that the mass flux

M h[f +1 (B_3 ) h '' ( i+l1 2 B _D 1)h 4 f, 46
2 (4.6)3 6 3

vanishes at the walls, which can be verified exactly by substituting ii. =u =

= 0 into the linearized flat bottom momentum equation:

1 2 D 1\ 1
+ B --B - + h4ixx 0

and obtaining that fxaxx, = 0, and therefore that M = 0 at the boundary.

4.1.4 Convergence and Stability

No stability analysis for the present numerical formulation of the FN4

model was done, due to the complexity of the model as well as the numerical

scheme. To attain the desired accuracy in the model with relatively fast conver-

gence, the Courant number (in a linear shallow water theory sense) used in all

cases was never larger than 0.3. The numerical implementation for the linearized

model proved to be stable for all cases tested. For some cases, it was necessary to

filter the solution as high frequency oscillations growth appeared near the points

where the bottom slope was discontinuous. This is due to the fact that the FN4
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model contains terms proportional to high (up to fourth) derivatives of h with

respect to x, and, for discontinuous bottom slopes, these factors become singular

and can introduce spurious high frequency waves to the solution. When necessary

we used a Shapiro (1970) filter with either 8 or 16-point average, and the filter

was applied every Nf time steps where 50 < Nf < 500, depending on the case.

In most cases where nonlinear effects become important (very steep, high

waves), the iteration process tend to become slow, or even diverge. To correct this

problem we adopted a relaxation technique in the iteration process, as follows: if

with two iterations the error tolerance is not met, we assume that the corrector

is overshooting the desired solution and apply the formula to both ft and r1:

ft•+l = (1 - R)fi+P + Rfi/~ (4.7)

where the relaxation coefficient, R ranges from 0 to 1. fj+l is the estimate in

the previous iteration, and fJi+l is the estimate in the current iteration, which is

replaced by the relaxed vector f+i'r. The optimal value of R strongly depends

the type of problem. For most cases, we used 0.2 < R < 1. For very highly

nonlinear (near breaking) solitary waves it was necessary to use R as small as

0.08 to keep the solution from diverging. The number of iterations necessary for

convergence within the desired accuracy was typically less than 6, but for some

very near-breaking solitary waves it was as high as 20.

4.2 The Sponge Layer

The last term in (4.2) is a linear friction-type term and is referred to as

a "Newtonian cooling" by Israeli and Orszag (1989). Other types of dissipation

terms such as viscous-type dissipation (analogous to dissipation due. to viscosity

in the Navier-Stokes equations), and "sponge-filter" (Israeli and Orszag, 1989)

52



are also possible, but it was found that the Newtonian cooling was sufficient to

damp the waves with efficiency and emulate well the radiation condition. In

principle, the only required rule for the sponge layer function fd is that it must

vanish everywhere except near the boundaries, where the dissipation takes place.

In practice, a smooth transition between the sponge layer and the interior of the

domain is necessary to minimize reflection from the sponge layer back into the

domain, which is highly undesirable. We choose the same form for the sponge

layer coefficient fd(x) as did Wei (1997):

fSexp[(xp)N--1 X

fd(x) exp(i)-i XS < X < XL (4.8)
0 O<X <Xs

where xp is a transformed coordinate defined by

X - XS (4.9)
XL - XS

and S is a dissipation strength constant. In all our computations, N = 2 gave

satisfactory results. Reasonable width of the sponge layer (XL - xs) and values

of S depend on the wave conditions. Values of 20 < S < 40 combined with the

sponge layer width of about three to four times the characteristic wavelength gave

satisfactory results for all cases considered. For deeper water (shorter waves), the

velocity variable fi can be quite small, and the dissipation term may not be able

to damp the waves very efficiently. For such cases, S or XL - XS (or both) should

be increased.

4.3 Wave Generation Inside the Domain: Source Function

It should be clear that using sponge layers near the boundaries rules out

the possibility of any type of wave generation at the boundary. It is therefore
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necessary to introduce a source term inside the domain to generate the desired

waves, which will be allowed to propagate towards the boundaries, where these

waves are damped by virtue of the sponge layers. This is the role of the last term

in (4.1), f,(x, t). The first attempt to include such terms in Boussinesq models was

made by Larsen and Dancy (1983), in which mass is added and subtracted from

the domain along a single line (point, in the case of a one-dimensional model).

Wei (1997) found that this approach, which worked well with the staggered grid

of Larsen and Dancy (1983), did not work well in his non-staggered grid, where

spurious noise appeared around the source point. It was necessary therefore to

distribute the source function around a certain neighborhood of the source. In

the present formulation, we closely follow the approach of Wei (1997), in which

the source function is assumed to be distributed as a Gaussian shape, making the

appropriate modifications to account for the added complexity of the model. The

formulation for the source function presented next is one-dimensional, but can be

extended to two dimensions is a straightforward manner.

If the local water depth at the source region is constant, h, and we want

to generate regular waves with angular frequency w, the source function can be

written as:

f,(x, t) = D, exp[-/38 (x - x,) 2 ] sin(wt), (4.10)

where x, is the center of source function, 3P determines how focused the source

function is, and D, is the magnitude of the source function. Assuming that the

generated wave have small amplitude, we can use the linearized version of the FN4

model and derive an exact analytical expression for D. by using Green's function

theory (see Appendix C), to obtain:

D, = 770 241(. )
D oWjOI 1 [1 + C3 (kh) 2 + C, (kh)]' (4.11)
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where k is the wave number computed from the linear dispersion relationship for

the present model (see chapter 3), of the wave generated at the source function

when it is away from the source region, C3 and C4 are constants given in chapter

3, a, and h1 are given in appendix C.

Although the gaussian shape parameter ,38 is arbitrary, in practice its value

has great influence on how well the source function can generate the desired waves.

Ideally, /3 should be as large as possible, so. that the source function would be more

localized. However, it turns out that if the source region is too narrow (large 3,),

the waves generated can be quite distorted and noise may also appear when the

waves not are small amplitude (see next subsection). Defining the width of the

source region W, to be the distance between two coordinates (equidistant from

the source center) where exp[-/38(x - x,) 2] is equal to e- 5 , we can write:

W, = 2 V5-//13. (4.12)

By trial and error, it was found that, for regular waves, a source with width

W, approximately equal to the wave length, gives satisfactory results for waves

within a wide range of amplitudes and wavenumber. Sensitivity tests for W, were

performed and are shown next.

4.3.1 Tests

Tests of the source function and sponge layers are now presented. Figure

4.1 shows schematically the location of the source and the sponge layers. In all

the cases a wave with period T = 1.5s, and wavelength L = 3.35m was used. The

water depth is h = lm, sponge layers widths are 3L, and sponge layer strength

S = 30. Six cases were considered: amplitudes a0 = 0.01m, a0 = 0.05m, and

ao = 0.lm, each for source region with W, = 0.25L and W8 = L. Figure 4.2
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Figure 4.1: Sketch of the domain for source function and sponge layers tests.
Domain length L. = 80m was used throughout.

shows results at various times prior to "steady-state", for a0 = 0.01m, and both

source widths. Notice that for this particular case of very small amplitude waves,

the source function worked quite well in generating the desired waves, regardless

of the width W1. With a0 = 0.05m, a more "nonlinear wave", 4.3 shows that

the narrower source region was not able to generate clean waves, and it can be

seen that higher frequencies contaminate the solution. Notice that these higher

frequencies are not necessarily near the Nyquist (instability-type) frequency. It

seems that the higher harmonics generated by the model are not behaving as we

desire as they are generated in the source function (which is derived from linear

theory). Using W. = L, however, this problem is corrected for this amplitude.

It seems that a good resolution of the source function, that is a larger W,, is

necessary to keep undesirable higher frequencies from appearing in the solution.

4.3 shows similar results for even higher waves a0 = 0.1m. With W. = 0.25L, the

solution became unstable right after t = 4T, whereas for 1478 = L, the resulting

waves are still quite clean.
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Chapter 5

THE SOLITARY WAVE

The phenomenon known as the solitary wave consists of a limiting wave

form with a single crest which propagates in fairly shallow water of constant depth,

and where the nonlinear and dispersive effects counterbalance each other yielding

a permanent form solution. In this chapter we study solitary waves solutions of

the FN4 model, and compare it to other models including extremely accurate

solutions of the full boundary value problem (Tanaka, 1986), Green and Naghdi

(1976) (GN) type models, and the WKGS model.

Many authors have found approximate solutions for the solitary wave, in-

cluding the early works of Boussinesq (1871) and Korteweg and deVries (1895).

Fenton (1972) developed a model based on a perturbation expansion around the

basic shallow water wave theory. His expansion includes terms up 9 th order and,

at the first three orders, recover the models of Boussinesq (1871), Laitone (1960),

and Grimshaw (1971). Longuet-Higgins and Fenton (1974) used conservation of

integral quantities such as mass and energy to arrive at extremely accurate re-

lationships between several solitary wave properties, such as the wave height,

energy, mass, wave Froude number F, (nondimensional wave speed), etc. They

also proved that the solitary wave with maximum wave height does not corre-

spond to the one with maximum fluid velocity at the crest, or maximum mass.
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More recently, in a study of the stability of solitary waves, Tanaka (1986) devel-

oped an accurate solution scheme to the full boundary value problem for solitary

waves. Throughout this chapter we will use this solution as the "exact" solution

in our comparisons. Shields and Webster (1988) studied the accuracy of solitary

wave properties of the first 3 levels of the GN models (referred hereafter as GN1,

GN2, and GN3). An nfth level GN model approximates the horizontal velocity

by an (n - 1)th polynomial, and the vertical velocity by an n h order polynomial.

GN1 recovers the model by Serre (1953), as shown by Kirby (1997). Shields and

Webster (1988) derived a GN2 set of equations for unsteady flow over an uneven

bottom, and a GN3 model, for one-dimensional steady flow over a flat bottom.

In the next sections, we compare several properties of the solitary wave

solution of the FN4 model with the exact solution, numerical WKGS solutions,

and also with GN solutions given by Shields and Webster (1988).

5.1 Linear Analytical Asymptotic Solution

At the tail of the solitary wave (away from the crest) the free surface

elevation 77 is very small, and we expect that the linearized set of equations should

describe the shape of the wave with good accuracy. In a reference frame moving

with the wave at nondimensional wave at speed Fr = c/lV'g, we can write the

following boundary value problem for the wave field far from the crest (located at

x = 0) in (x, z):

2 = o (5.1)

Ox = -F, x--+ oo (5.2)

0, = 0 z=-1 (5.3)

OZ = -z = 0 (5.4)

61



The solution to the system above is

€ = Kie 2-,x cos 27z - Frx (5.5)

Substituting (5.5) into (5.4) gives

tan 2 F. (5.6)
2 3'

The exact solution for the free surface elevation 71 far from the crest is of the form

7 = K 2 e2 x (5.7)

The parameter -y is referred to as the straining parameter, and (5.6) is directly

related to the exact dispersion relationship in linear wave theory.

For the present model, the 2 equations corresponding to the system (5.1-

5.4), in terms of the modified velocity variable ft are:

7/ = Fr (f - P 2 C 3fxx + /4C4iXXX) (5.8)

F,?--,= (i - P2Cl1~xx + p4C2fxxxx) (5.9)

where C1, C2 , C3 , C4 are defined in Appendix B. We now assume the solution

= e-•. (5.10)

Substituting (5.10) into (5.8,5.9), solving for p 2 A2 and keeping the relevant root,

we obtain

2 (C 3Fr2- Cl) - [(C 3 Fr2 - Cj)2 +4 ((1- Fr2) (C 4 Fr2 - C 2)] 1/2

/A2 
(C4 F2 - Cj)

(5.11)
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To recover Nwogu (1993), refer to chapter 3. The straining parameter 7 is related

to A as 2-) = -A.

The expressions for the relation between the straining parameter and the

Froude number for GN2, and GN3 (Shields, 1986 and Shields and Webster, 1988)

are:

y =3(52 - 12F, 2 - 419F,4- 33F,-2 + 124) (5.12)

and

16F,•2 6 + 60 (1 - 9F,2) _Y4 - 20 (39 - 144F,2) _Y2 + 1575 (1 - F,2) = 0 (5.13)

respectively.

Figure 5.1 shows comparison between the percentage error to the exact

solution of the transcendental equation (5.6) for y, between the present model,

Nwogu's model, GN2, and GN3. Although all models have relatively small errors,

the present model is much more accurate than all the others by at least an order

of magnitude. Notice that compared to GN2 and Nwogu's model, the difference

in the errors is of at least five order of magnitude.

5.2 Solitary Waves with Permanent Form

In this section, the numerical scheme described in chapter 4 is used to com-

pute several approximate solitary wave solutions to the fully nonlinear models FN4

and WKGS. The initial condition used for the model was constructed from the

computer program by Tanaka (1986) in the following manner: for the smallest

computed wave with amplitude r77,.. ; 0.2, 77 and ft (u,, in the case of WKGS)

were obtained from Tanaka's exact solution and used as initial condition for FN4
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Figure 5.1: Percentage error to exact solution in straining parameter. Present
model (full), Nwogu (dash), GN2 (dot), GN3 (dash-dot)
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and WKGS. After the solution reached permanent form, it was multiplied by a

factor slightly larger than one (typically 1.05) and this re-scaled wave was used

as the initial condition for the next case. This procedure was repeated until the

desired range of solitary waves was covered, and proved to be more efficient than

using Tanaka's solution as the initial condition for all amplitudes. Since Tanaka's

and each consecutive re-scaled initial condition do not satisfy the approximate

equations, there is a transient period while the solution is not a permanent form

solitary wave, but has a dispersive tail of shorter waves left behind. Since these

shorter waves travel with phase speeds which are smaller than the "main wave",

eventually the tail is left far behind and does not interfere with the solitary wave,

which, at this point, can propagate with permanent form. The time required for

the solution to achieve a permanent form solitary wave depends on the initial con-

dition. High amplitude initial conditions will reach permanent form more quickly,

since the primary wave moves much faster than the tail. Smaller amplitude waves

will have less amplitude dispersion and it will take longer for the permanent form

solitary wave to separate from the tail. After each solution reaches permanent

form it is straightforward to obtain properties such as the Froude number, velocity

profiles, mass, energy, etc. No filtering was necessary during these computations,

although for higher waves the under-relaxation parameter had to be as small as

r = 0.08 for the solution to converge with error tolerance in the iteration typi-

cally 10-12 < T, rr < 10-'. For the permanent form solitary waves we used grid

spacing Ax = O.1h for waves with amplitude 0 < 77max < 0.4h, Ax = 0.05h for

0.4h < qmax < 0.7h, and Ax = 0.05h for qmax > 0.7h, where h = 1. We used At

such that the Courant number was always below 0.2 (for accuracy purposes).

We now present the following nondimensional quantities for the FN4 model,

where the scales for the basic variables are x = xh, z = z'h, t = t'/g/hl

u = u'Vg/h, and the primes denote nondimensional quantities. The primes in the
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formulas below are dropped for the sake of notation clarity. The total mass of the

solitary wave above the still water level is given by:

M =f +0 dx. (5.14)

The potential energy is:

= 1+00 1272dx. (5.15)

The kinetic energy is:
1 ooH

_0= (U2 + W2 d(dx (5.16)

where ( = (1 + z), H = 1 + 7,

u(C) = ii + 1P2 (B- (2) XX + 1 P (B - ( 2 _- + f--6 X - (5.17)

and

W(C) = [ 2 fI~X + [It' [(~ + 1C)~ (5.18)

After substitution of (5.17) and (5.18) into (5.16) and retaining terms of up to

O(p4), we obtain

K = H 2 [JH{ [ 2 ( 2 ) 1iX]

+ 1 Iit4[B-(2)B ( 4) i~x
2 6

+

+ ((CiX) 2 + ( 2 (B- 1(2) fix d(dx. (5.19)

The integral in C can be evaluated analytically, and the integrals in x are computed

using Bode's rule, which is accurate to O(Ax6 ), within a range containing the

solitary wave and where the free surface at the extremes is negligibly small.
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We define the quantity

S= 1 - (uc - Fr) 2 , (5.20)

where u, is the particle velocity at the crest, computed from (5.17) by locating the

position of the crest in x and computing u(( = H) at that x location. As the wave

amplitude varies from 0 to its limiting value, in which u, = Fr, the parameter Ws

goes from 0 to 1.

The speed of each wave was computed by letting an already permanent form

solution propagate over a distance of around 500 times the water depth, recording

the difference between the crest location x, before and after this interval dt and

computing
F,= dx- (5.21)

The exact location of the wave crest could not be obtained directly from

the computations, since only by virtue of luck the crest was located exactly at one

of the grid points. The location of the crest was determined by fitting a 4 th order

polynomial to the free surface around the crest. The peak value and x location

were then computed using the fitted polynomial. We used this same approach to

compute ii and its x derivatives at and underneath the crest.

Figure 5.2 shows computations of the free surface elevation of half of a solitary

with Fr = 1.266 for FN4, WKGS, GN1, GN2, GN3, and the exact solution. The

three GN models are plotted with dotted lines, with GN1 and GN2 .marked with

labels. Notice that, of all models, GN3 has the best match with the exact solution.

FN4 is also fairly close to the exact solution, but WKGS strongly overpredicts the

wave height, and slightly underpredicts the tail. GN models tend to underpredict

the height and overpredict the tail. Figure 5.3 shows the same model comparisons

as in Figure 5.2, except for GN1 and GN2 whose solutions were not available. In
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this case the maximum wave height is kept constant for all models. Again, GN3

has the best shape compared to the exact solution. WKGS solution compares

better with the exact solution than in the previous case (Fr kept constant), but

FN4 still compares better with the exact solution than does WKGS. Notice also

the difference in wave speed Fr for each model. In Figure 5.4 the vertical profiles

of the horizontal velocity are shown for the exact solution, FN4, and WKGS, for

the waves shown in Figure 5.2, and it can be seen that the O(/p4) model has a

more accurate kinematics representation than the O(pt2 ) model, confirming what

we have already shown for linear theory. Unfortunately it was not possible to

obtain GN vertical profiles, but it can be speculated that it would not be able

to predict this property as accurately as the FN4, since it assumes the horizontal

velocity to be only a 2 nd order polynomial.

Figure 5.5 shows the relationship between the speed and amplitude of a

wide range of solitary waves for several models. Notice that once again GN3 has

the closest solution to the exact one. FN4 slightly underpredicts the wave speed

for a given amplitude, whereas the deviation in WKGS is of an order of magnitude

higher. GN2 and especially GN1 overpredict the wave speed throughout the range

tested. It is important to keep in mind that as the wave approach the limiting

value, the crest becomes extremely sharp (with the limiting wave having a crest

forming an angle of 1200), which makes it difficult for the finite difference scheme

of FN4 to resolve the wave well near the crest, since the model has up to 5th order

derivatives in x.

Figure 5.6 shows computations of the parameter w8 as a function of the

wave speed. In this case, the FN4 model is the closest to the exact solution. This

is not surprising if one recalls that w8 is directly related to the horizontal fluid

velocity at the crest, and that the FN4 has a 4 th order polynomial representation
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Figure 5.2: Shape of solitary waves with fixed Fr = 1.266. Exact (full), FN4
(dash), WKGS (dash-dot), GN1, GN2, GN3 (dot)

69



0.8

0.7

0.6.

0.5-

P0.4 '

0.3-

0.2-

0.1

0
0 0.5 1 1.5 2 2.5 3

x

Figure 5.3: Shape of solitary waves with fixed amplitude rmax 0.65. Exact:
Fr = 1.265 (full), FN4: Fr = 1.262 (dash), WKGS: F, = 1.245
(dash-dot), GN3: F,_ = 1.266 (dot)

70



I i I I

0.6

0.4

0.2

0

-0.2

-0.4-

-0.6-

-0.8-•

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
U.

Figure 5.4: Vertical profile of horizontal velocity for solitary waves with ampli-
tude 7,ma, = 0.65. Exact (full), FN4 (dash-dot), WKGS (dash)

71



0.8 - "N3

/ ," GN2

0.7 / / "N

/ " / .. " ."

0.6 -

0.5 ,

0.4-

0.3

0.2
1. 1.15 1.2 1.25 1.3

F
r
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of the vertical profile of the horizontal velocity, whereas, as already observed, only

a 2 nd order polynomial is assumed in both GN3 and WKGS. In the next figures,

GN solutions were not available. Figures 5.7, 5.8, and 5.9 show plots of the mass,

kinetic energy, and potential energy of solitary waves against the wave speed, for

the exact solution, FN4, and WKGS. All three properties show a similar behavior

to the wave amplitude (Figure 5.5) when plotted against Fr. In Figure 5.7, WKGS

agrees with the exact solution better than FN4, but this is only a coincidence,

as the overprediction of the wave crest counterbalance the underprediction of the
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wave tail. A similar effect happens with the kinetic energy (Figure 5.8), where

the plots of the 2 models coincidently are on top of each other. The potential

energy (Figure 5.9) calculations for model FN4 has better agreement to the exact

solution than it has for the WKGS model, which confirms that the good agreement

of WKGS in Figure 5.5 was by virtue of luck, since both the mass and the potential

energy are only dependent of the free surface elevation.
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5.2.1 Discussion

From Figures 5.1, 5.2, 5.3, 5.5, 5.6, it is clear that the FN4 model has a

better asymptote (linear) agreement with the exact solution than does GN3, but,

with the exception of the parameter w, (related to the velocity at the crest of the

wave), in all other nonlinear properties, GN3 has a better agreement than FN4.

This may seem somewhat surprising since GN3 approximates the horizontal veloc-

ity by a second order polynomial (two orders lower than the FN4 model) and the

vertical velocity by a third order polynomial (same as the FN4 model), and a more

careful study is needed to explain these discrepancies. Nevertheless, we make the

following conjectures: FN4 satisfies mass conservation and all boundary condi-

tions in an approximate sense, consistent with the level of approximation of the

velocity field. GN3 satisfies mass conservation and the kinematic boundary con-

ditions exactly. The coefficients for the velocity variable in FN4 are derived such

that the linear dispersion relationship is extremely accurate, and no optimization

is done considering that the free surface displacement is finite or including nonlin-

ear terms. The advantage of this approach is that the model is simple in the sense

that there is only one dependent variable describing the internal kinematics. For

small amplitude waves the FN4 model is capable of extremely accurate results for

a wide range of water depths, but as the nonlinear terms become more important,

and the actual free surface deviates considerably from the still water level (for

which the model was derived to perform its best), errors start to increase. On the

other hand, GN3 is derived without any assumption, and no optimization is made

"a priori". Rather, the coefficients for the velocity polynomial are derived by a

minimization of the errors in the momentum equation over the entire actual water

depth, which is changing with time. As a consequence, GN3 has three dependent

variables describing each component of the velocity field, besides the free surface

elevation. For a 2-dimensional problem, GN3 would have seven coupled evolution
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Figure 5.10: Sketch of shoaling solitary wave.

equations, whereas FN4 would have three.

5.3 Shoaling Solitary Wave

In this section we use permanent form solitary wave solutions for the FN4

and WKGS models as initial conditions for a more complex domain which includes

a slope where the waves shoal and eventually break. The two Boussinesq models

are compared to the Boundary Element Method (BEM) results using Grilli et al.

(1989) formulation, which is a solution to the full boundary value problem, and

can be regarded as an "exact solution" for the sake of comparison with Boussinesq

models. Comparisons between WKGS, Nwogu (1993), and BEM for several cases

can be found in Wei et al. (1995). Here, we concentrate in a single case of a wave

with nondimensional amplitude qma,/ho = 0.2, where h0 is the water depth before

the slope s = 1/35. A sketch of the problem is illustrated in Figure 5.10.

Figure 5.11 a shows the free surface elevation at 4 different times as the wave

shoals on the slope. The nondimensional x' = x/ho has its origin at the toe of the

slope, and the nondimensional time t' = t(ho/g)-1/2 has its origin at the instant

the wave crest passes through x' = 0. This definition was used to synchronize the

3 models' results. Although the differences are subtle, it is possible to see that
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Figure 5.11: (a) Solitary wave shape at t' = tl = 39.98, t2 = 53.19, t3 = 61.13,
t4 = 66.89. (b) Crest speed (top curves) and fluid velocity (bottom
curves). Circle denotes breaking point. BEM (full), FN4 (dash),
WKGS (dash-dot)

the FN4 wave is closer to the BEM than the WKGS solution, in particular near

the wave crest at t 3 and t 4 (shown in finer detail in Figure 5.12). Figure 5.11b

shows computations of the crest speed and the fluid velocity at the crest. The

location of breaking, defined as the point where a vertical tangent is formed at the

face of the wave from the BEM, is also shown. The crest speed was computed by

locating and recording the wave crest position xc, at every time step t, in a similar

manner to what was done in the previous section, then computing the speed by

c- dx, (5.22)
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Figure 5.12: (a) Solitary wave shape at t' = t4= 66.89. BEM (full), FN4 (dash),

WKGS (dash-dot)
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Near breaking, the computations of C, and V, were smoothed with a 12th order

polynomial, since the estimations given by (5.22) exhibited some jitter. The model

ran only up to the point where C, = V,, and the values beyond that point on

Figure 5.11b are due to the polynomial extrapolation. The fluid velocity at the

crest which, due to the presence of the slope, has both horizontal and vertical

components, is given by:

y, = /u + 7, (5.23)

where u, and w, can be evaluated from the formula for the velocity profiles given

below:

U= + /.2 [(Ah - ()f21. + 2hx(Ah - O)f22 + (Bh2 
- (2)f22x]

+ [t4 [(Ah - C)f41l + 2hx(Ah - O)f42 + (Bh2 
- (2)f42x

+ (Ah - C)f43x + 2hx(Ah - )f44 + (Bh2 - (2)f44x

+ 3hx(Bh2 _ C2)f45 + (Ch3(3 )f45-

+ 4hx(Ch 3 _ ( 3 )f46 + (Dh 4 _ (4)f46x], (5.24)

w = - [_2 (f21 + 2(f22) + [,4 (fin + 2(f42

+ f43 + 2(f4 + 3C2f45 + 4(3f46)] . (5.25)

where, again, nondimensional quantities are implied but primes have been omit-

ted for notation simplicity. Model FN4 performs better than WKGS in predicting

both the phase speed and the crest fluid velocity. Finally, vertical profiles of the

horizontal velocity under the crest are shown in Figure 5.13 at three different lo-

cations, including one near the breaking point as predicted by BEM. As expected,

the FN4 model performs better than the WKGS due to its better representation

of the internal kinematics.
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Figure 5.13: Vertical profile of horizontal velocity under the crest as it passes
through (a) x'=20.96, (b) x'=23.63, (c) x'=25.91. BEM (full), FN4
(dash), WKGS (dash-dot)
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Chapter 6

COMPARISONS WITH LABORATORY

MEASUREMENTS

It is well known that regular waves decompose into higher frequency free

waves as they propagate past a submerged bar, as shown in experimental work

by Beji and Battjes (1993), Luth et al. (1994), and Ohyama et al. (1994). The

basic mechanism is as follows: as the waves propagate onto the front slope of

the bar, nonlinear interactions transfer energy from the leading wave component

(primary wave) to higher harmonics, causing the wave to become steeper and

also asymmetric (pitched forward). After the peak of the bar is reached (say

no breaking occurs), and the bottom slope becomes negative (depth increases),

the nonlinear coupling (forcing) of the higher harmonics with the fundamental

wave becomes progressively weaker, and, from higher to lower harmonics, each of

the Fourier components are released as free waves with their own bound higher

harmonics. Of course, since the waves after the bar travel with different speeds,

the process can be fairly complicated with some waves overtaking others, and

involving nonlinear interactions. It is clear therefore that wave propagation over

a submerged bar is a quite demanding test for Boussinesq-type models, as it

requires that the model predict the nonlinear harmonic generation well, and also

that the released shorter waves (behind the bar) have an accurate speed, which
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may not happen even if the model predicts well the speed of the primary waves

before they reach the bar.

Comparisons between several weakly nonlinear Boussinesq-type models and

experimental data by Beji and Battjes (1993) and Luth et al. (1994) of waves prop-

agating over a submerged bar were presented by Dingemans (1994). In general,

the models performed relatively well for the longer, lower amplitude waves, but

all were fairly inaccurate for the shorter, more nonlinear waves, especially behind

the bar.

Comparisons between the extended Boussinesq model by Nwogu (1993),

among other types of models, and experimental data, also for waves passing over

a submerged bar, were presented by Ohyama et al. (1994), and the results were

similar to the comparisons made by Dingemans (1994), that is, the model poorly

predicted waves behind the shoal for the shorter, higher wave cases.

In this chapter we compare the FN4 model with three laboratory exper-

imental data sets of regular waves propagating in a one-dimensional wave flume

and over a submerged bar: Beji and Battjes (1993), Luth et al. (1994), and

Ohyama et al. (1994). We also show comparisons of the WKGS model with the

same data sets. The models' comparisons with the data are done in three different

manners: plots of free surface time series at fixed locations, spatial plots of Fourier

components of the time series, and a quantitative estimation of accuracy defined

by:

E [Y(J) - yd(j)]'

di = 1 - n2 j=l (6.1)
S[ly(j) 9d + IYdC7) - 01I]

j=nl

where di is an index of agreement proposed by Wilmott (1981) for the ith wave
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gauge, and where ni and n2 cover a full wave period in the time series.

Yd(j) are the measured data to be compared with, y(j) are the predicted

values from the model, and gd is the mean value of Yd(j). A perfect agreement

between data and model corresponds to di = 1, while a complete disagreement

results in di = 0. In all the numerical simulations we used Ax = 0.025m and kept

the Courant number below 0.3. The sponge layer strength and width used were

S = 30 and XL - xs = 3L, respectively. The width of the source function used

was W, = L, where L is the incident wave length. The details of the experiments

and comparisons with the models are presented in the sections below.

6.1 The Delft Hydraulics Experiments

The experiments performed by Beji and Battjes (1993) and Luth et al.

(1994) have the same geometric characteristics, except for the length scale in

Luth et al. (1994), which is twice as large as in Beji and Battjes (1993). In Luth

et al. (1994) all gauge locations used in Beji and Battjes (1993) were repeated, and

another run of measurements was performed with the gauges at different locations.

For the sake of consistency with the study by Dingemans (1994), we re-scale all

measurements to the scales used in Beji and Battjes (1993). The layout of the

experimental set-up with the locations of the measurement stations (to which we

refer by their location, e.g. gauge 2.0m, gauge 15.7m, etc) and the geometry of

the flume are illustrated in Figure 6.1. In the present work we use the data from

Luth et al. (1994), since in that experiment active wave absorption was used at

the end of the flume and both reflection and bound long waves were monitored

during the experiment.

Three sets of data were collected using different incident wave conditions.

We refer to these data sets as cases (a), (b), and (c). In case (b), wave breaking
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Gage locations
2.0 4.0 5.7 10.5 12.5 13.5 14.5 15.7 17.3 19.0 21.0 23.0

Wave Wave

Wae 0.3 :20 I 1:10 j0.4 Wae

0 6.0 12.0 14.0 17.0 23.0

Figure 6.1: Sketch of wave flume of Delft experiments. All dimensions in (m)

Table 6.1: Incident wave characteristics for the Delft experiments.
Case (a) Case (c)

Wave amplitude (rm) 0.01 0.0205
Wave period (s) 2.02 1.01

= koho 0.67 1.69
= ao/ho 0.025 0.051

occurred on the crest of the shoal, and therefore these data were disregarded, since

the present model does not include any breaking mechanism. The incident wave

characteristics for cases (a) and (c) are given in Table 6.1. In all the cases, the

data from gauges at 2.0m or 4.Om (remember these are 2 experiments combined)

were used to synchronize the data with the models.

Figures 6.2 and 6.3 show comparisons with data from the Delft experiments

for case (a) of the models WKGS and FN4. Notice that at the station 5.7m there

is a phase mismatch in the data. This systematic error appears in all the cases for

this gauge. Also, no data was available for the station 23.0m. Both the FN4 and

WKGS models perform quite well for all the gauges up to the crest of the bar,

but as the waves pass the back slope of the bar, the WKGS model shows some

discrepancies with the data. This is due to the aforementioned decoupling of the
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Figure 6.2: Comparisons of free surface displacement with case (a) of Delft
experimental data at several gauge locations. WKGS (dash-dot),
data (solid).
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Figure 6.3: Comparisons of free surface displacement with case (a) of Delft
experimental data at several gauge locations. FN4 (dash-dot), data
(solid).
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Figure 6.4: Linear dispersion relationship as (nondimensional) wave speed vs.
wave frequency. Present Model (dash), WKGS (dash-dot), exact
(solid). Dotted vertical lines are waves with periods T, = (2.02/n)s.

higher harmonics from the primary longer wave which are released as free waves

propagating with a larger value of y which are more susceptible to inaccuracies.

The FN4 model remains quite accurate even for the gauges located after the

bar. To illustrate the inaccuracies due to higher harmonic decoupling, Figure 6.4

shows an alternative representation of the linear dispersion relationship where the

nondimensional wave speed is plotted against the wave frequency. The vertical

dotted lines indicate the location of the frequency of the fundamental wave in case

(a), of which the period is T1 = 2.02s, and its harmonics with periods T2 = T1/2,
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T3 = T1/3, etc. Notice that the phase speed error in the primary wave (T1 ) is small

for both the FN4 and WKGS models. As the bound waves are released as free

waves they travel with their own speed, which, in the linear limit, are represented

by the intersection of the vertical lines T2, T3 , etc. with each model's dispersion

curve. Notice that the errors in the speed of the released higher harmonics starting

from T3 for WKGS are considerably larger than for the FN4 model.

Similarly to Figures 6.2 and 6.3, Figure 6.5 shows plots for the WN4 model

(this is the present model, but with the assumption 0(8) = O(2 2) and neglecting

terms of 0(P2j2, 5t 4, ... ). Apart from slight phase differences, the comparison is

about as good as the FN4 model, which indicates that for this case, the improve-

ment in the dispersion effects of the FN4 and WN4 models over the WKGS model

is more important than the fully nonlinear effects accounted for in WKGS and

FN4, but not in WN4.

Figures 6.6, 6.7 and 6.8 are analogous to Figures 6.2, 6.3 and 6.5, but for

case (c) (see Table 6.1). Notice that in this case the incident wave has twice the

amplitude and about 2/5 of the wavelength of case (a). Before the waves reach

the back slope of the bar, FN4 and WKGS perform quite similarly, although some

phase differences are apparent. Model WN4 does not perform as well in this

case due to its weak nonlinearity assumption. As the waves pass over the bar, the

higher harmonic decomposition combined with nonlinear effects are strong enough

in this case to make the three models give very different results, with FN4 being

the most accurate, giving very good agreement except for slight phase differences.

Notice that for this case, WN4 does not perform nearly as well as FN4, and also

qualitatively worse than the WKGS (accurate to O(/t 2), but fully nonlinear) for

all gauges up 15.7m. This result is a strong indication that the improvement in

linear dispersion is not always more important than the fully nonlinear effects,
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Figure 6.5: Comparisons of free surface displacement with case (a) of Delft
experimental data at several gauge locations. WN4 (dash-dot), data
(solid).
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Figure 6.6: Comparisons of free surface displacement with case (c) of Delft ex-
perimental data at several gauge locations. WKGS (dash-dot), data
(solid).
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Figure 6.7: Comparisons of free surface displacement with case (c) of Delft ex-
perimental data at several gauge locations. FN4 (dash-dot), data
(solid).
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Figure 6.8: Comparisons of free surface displacement with case (c) of Delft ex-
perimental data at several gauge locations. WN4 (dash-dot), data
(solid).
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contrary to the generalizing conclusion of Dingemans (1994). Referring back to

Figure 6.4, again, after the waves pass the bar, the higher harmonics are released

as free waves. For case (c) the primary (incident) wave is indicated by the vertical

dotted line labeled T2 , and its second and third harmonics are represented by the

even indexes, that is, T4 and T6 respectively. Notice that the error in the speed

of the primary wave is negligible for the WKGS model. In the second harmonic

(T4 ) the error for WKGS is fairly high, and for FN4, although not negligible, is

considerably smaller, and the same being the case of the released third harmonic

(T 6).

Figure 6.9 shows comparisons of the absolute value of the amplitudes of

the Fourier transform of one wave period of the time series, between both FN4

and WKGS, and the data points at each gauge location for both cases (a) and

(c). Figure 6.10 shows similar plots for FN4 and WN4, where FN4 results are

identical to those in Figure 6.9. Also shown are snapshots of the free surface

elevation and the position of the bar (out of scale). In both cases (a) and (c),

the WKGS model tends to overpredict the higher harmonics after the crest of

the bar. For case (a) the FN4 and WN4 models give very similar results, with

some slight underpredictions by WN4 of the amplitudes of the released third

and fourth harmonics after the bar crest. In case (c) WN4's inability to generate

higher harmonics accurately due to the weak nonlinearity assumption is evident in

the underprediction of the decomposed higher harmonics. Notice the modulation

present in the fundamental wave before the bar, shown by all three models, caused

by partial wave reflection from the front of the bar. Notice also that for case (c) the

FN4 model slightly overpredicts the third and fourth modes around the toe of the

front face of the bar. This is due to numerical error introduced by the high order

derivative terms, which are undefined functions at that location. When necessary,

the solution was filtered (see Chapter 4) to avoid high frequency contamination
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Figure 6.9: Comparisons of the spatial variation of the Fourier components of the
free surface displacement with cases (a) and (c) of Delft experimental
data. Bottom panels show the free surface elevation. FN4 (solid),
WKGS (dash-dot), data (circles).
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Table 6.2: Index of agreement di.
Gauge case (a) case (c) 1

Location (m) WKGS[ FN4 WN4 WKGSI FN4 JWN4
2.0 0.998 0.998 0.998 0.997 0.996 0.998
4.0 0.996 0.996 0.996 0.997 0.997 0.984
10.5 0.995 0.995 0.995 0.982 0.986 0.997
12.5 0.999 0.999 0.998 0.997 0.995 0.927
13.5 0.996 0.995 0.987 0.996 0.996 0.990
14.5 0.995 0.997 0.993 0.979 0.971 0.883
15.7 0.995 0.996 0.980 0.973 0.993 0.977
17.3 0.975 0.995 0.972 0.880 0.973 0.934
19.0 0.973 0.982 0.943 0.968 0.987 0.970
21.0 0.927 0.993 0.962 0.948 0.965 0.931

problems. In general, as in the case of the time series plots, the FN4 agrees with

the data much better than WKGS and than WN4 for case (c).

Table 6.2 shows the index of agreement di defined by (6.1) of the models

FN4, WN4, and WKGS, with both cases (a) and (c) of the Delft experiments for

all gauges except 5.7m and 23.0m. Of course, the differences in di between the

models should only have significance when they are larger than di for the incident

wave (gauges 2.Om and 4.0m). The results confirm that the best performance

is from the FN4 model, with only one case where WKGS gave a slightly better

result (case (c), gauge 14.5m) due to a slightly larger phase mismatch in FN4. It

is clear that the WKGS model outperforms the WN4 model around the bar crest

(gauges 12.5m through 14.5m), but as the waves reach deeper water (importance

of nonlinearity and dispersion switch), WKGS loses accuracy. Although WN4 has

much more accurate dispersion relationship in deeper water than WKGS, since

it was not capable of generating higher harmonics properly while the waves were

shoaling, the overall solution becomes inaccurate after the bar. This confirms the
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Figure 6.11: Sketch of wave flume of the Ohyama experiment. All dimensions
in (m)

importance of the full-nonlinearity assumption made in the WKGS derivation but

not in the WN4.

6.2 The Ohyama Experiment

In this section we show comparisons of the models FN4 and WKGS model

with the experiment by Ohyama et al. (1994) (referred here as simply the Ohyama

experiment). Computations with the WN4 model were not performed for this case.

A sketch of the wave flume with the gauge locations is shown in Figure 6.11. We

now summarize the experimental setup. The wave flume is 65m long and 1.Om

wide. The total depth of the flume is 1.6m. The location of the center of the bar

was 28.3m from the piston-type wavemaker. All other relevant dimensions can

be seen in Figure 6.11. The measurements were performed before the point when

waves reflected from the bar reached the wavemaker. At the right end of the flume,

waves were absorbed by the presence of coarse materials to dissipate the energy.

A total of six tests were performed with three different incident wave periods

(1.34s,2.01s,2.68s) each for two different wave amplitudes (0.0125m,0.025m). No

wave breaking occurred in any of the tests. The data was obtained by digitization

of the plots (performed by Andrew Kennedy) from the original article. The only
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Table 6.3: Incident wave characteristics for the Ohyama experiment.
Case (2) Case (4) Case (6)

Wave amplitude (m) 0.025 0.025 0.025
Wave period (s) 1.341 2.012 2.683

y =_ kh 1.299 0.769 0.555
J - ao/ho 0.050 0.050 0.050

time series available for comparisons were the ones at station 3 and 5, for all three

wave periods, and the highest of the two amplitudes (0.025m). Fourier amplitudes

were available for the same wave conditions but at all measurement stations. Time

series were synchronized at station 3. We refer to the three tests as cases (2), (4),

and (6), as in Ohyama et al. (1994). The incident wave conditions are summarized

in Table 6.3. The incident wave conditions are similar in the Ohyama and Delft

experiments. The major difference between the two experiments is that the bar

in the Ohyama experiment is much shorter and with much steeper slopes than

the one in the Delft experiments, more reminiscent of a submerged rubble mound

structure. The steep slopes add extra difficulty for the models' performance, since:

(i) the models' dispersion properties are optimized assuming constant depth; (ii)

the assumption that the vertical velocity is 0([z2 ) times the horizontal velocity

is violated at steep slopes. Smoothing of the corners of the bar, besides filtering

every 100 time steps was necessary to prevent spurious high frequency noise to

contaminate the solutions. To smooth the corners of the bar we applied a 3-point

average by Shapiro (1970) five times. Since the waves are progressively longer

from case (2) through (6), we expect that the Boussinesq models will perform

best in case (6), and worst in case (2). We also expect higher mismatches between

models and data at station 5 than at station 3, due to increasing errors in the

phase of the decomposed higher frequency bound waves as they reach the deeper

water behind the bar.
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Figures 6.12, 6.13, and 6.14 show comparisons of the FN4 and WKGS

models with data for cases (2), (4), and (6), respectively. Notice that for cases (2)

and (4) the FN4 model shows a mismatch in the phase speed at station 5, and an

underprediction of the wave crests and troughs, an indication that even the fully

nonlinear, O(y,4) model has limited ability to predict waves past a submerged bar

with very steep slopes, if the waves are short enough. For case (6) the FN4 model

agrees very well with the data. For all three cases, the WKGS model has poor

qualitative agreement with the data at station 5, mostly due to phase errors and

overprediction of higher harmonics behind the bar.

Figures 6.15, 6.16, and 6.17 show comparisons of the Fourier amplitudes

along the flume between both FN4 and WKGS, and the data points at each station

for cases (2), (4), and (6) respectively. In all cases, the models predict well the

Fourier amplitudes before the back face of the bar. For case (2), WKGS gives

slightly better prediction of the second harmonic at stations 4 and 5 than FN4,

but once again strongly overpredicts the third and fourth harmonics at those

stations. For case (4), the FN4 model gives better prediction than WKGS for

all but the third harmonic, which WKGS agrees slightly better with the data.

For case (6), both models agree reasonably well with the data, with FN4 having

a better prediction of the third harmonic at station 5 and the WKGS model

matching the fourth fourth harmonic slightly better at that same station. For

this case, the deviations from the data in the time series computed by WKGS at

station 5 are probably due to phase errors, which is not detected by the Fourier

amplitudes comparisons.

Similarly to the case of the Delft experiment, table 6.4 shows the index of

agreement between the models WKGS and FN4, and the data from the Ohyama

experiment for cases (2), (4), and (6), stations 3 and 5. Notice that for cases (2)
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Station 3 - (a) Station 5 - (b)

0.08 0.08
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0.04 0.04
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0 000
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Figure 6.12: Comparisons of free surface displacement with case (2) of the
Ohyama experimental data at stations 3 and 5. FN4 (upper panels
- a,b), WKGS (lower panels c,d), data (circles).

Table 6.4: Index of agreement di.
Station case (2) case (4) 11 case (6)

WK-I F WKGSI FN4 if WKGSI FN4

3 0.994 0.998 0.991 0.994 0.991 0.991
5 0.921 0.914 0.927 0.880 0.945 0.976
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Station 3 - (a) Station 5 - (b)
0.1 0.1

0S'

-0.05 -0.05

Station 3 - (c) Station 5 - (d)
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0 1 2 3 4 0 1 2 3 4
t(s) t(s)

Figure 6.13: Comparisons of free surface displacement with case (4) of the
Ohyama experimental data at stations 3 and 5. FN4 (upper panels
- a,b), WKGS (lower panels c,d), data (circles).
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Station 3 - (a) Station 5 - (b)
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Figure 6.14: Comparisons of free surface displacement with case (6) of the
Ohyama experimental data at stations 3 and 5. FN4 (upper panels
- a,b), WKGS (lower panels c,d), data (circles).
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X 10-2 Fourier amplitudes, case (2)

3-

S2.5

.. ~2---- 2 - -0 .

1-

0.2 \* 0 N.

0 1 0 - I -

//

Free sufae cas (2)m ,
0 "~ - III I I

I - I I I I

0.6-
0.4 .

02/., \\,. *-

0 I ' 0

Free surface, case (2)

-3 -2 -1 0 1 2 3 4 5
x(m)

Figure 6.15: Comparisons of the spatial variation of the Fourier components of
the free surface displacement with case (2) of the Ohyama experi-
mental data. Bottom panel shows the free surface elevation. FN4
(solid), WKGS (dash-dot), data (circles).
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x 10- Fourier amplitudes, case (4)
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Figure 6.16: Comparisons of the spatial variation of the Fourier components of
the free surface displacement with case (4) of the Ohyama experi-
mental data. Bottom panel shows the free surface elevation. FN4
(solid), WKGS (dash-dot), data (circles).
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X10-2 Fourier amplitudes, case (6)
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Figure 6.17: Comparisons of the spatial variation of the Fourier components of
the free surface displacement with case (6) of the Ohyama experi-
mental data. Bottom panel shows the free surface elevation. FN4
(solid), WKGS (dash-dot), data (circles).
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and (4), the results indicate a better agreement with the data by WKGS than by

FN4. By inspecting time series comparisons in Figures 6.12 and 6.13, it is clear

that the better agreement index for the WKGS model is only due to a systematic

phase error by the FN4 model, which, overall has a better qualitative agreement.
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Chapter 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

A Boussinesq-type model with 0(1) nonlinearity and 0(p•4) dispersion and

vertical dependence was developed. By conveniently defining one of the dependent

variables as the weighted average of the velocity potential at two distinct water

depths, it is possible to achieve an accurate (4,4) Pad6 approximant form for the

linear dispersion relationship. A major improvement over the existing second order

models has been found in the prediction of the linear internal flow kinematics.

A perturbation approach was carried out to analyze random wave second

order nonlinear interactions and it has been shown that the FN4 predicts very well

the transfer coefficients of super and subharmonics generation over a wide range

of water depths. The model's cubic nonlinear Schrodinger equation governing the

propagation of wave group envelope was obtained by a standard WKB perturba-

tion multiple scales approach and its coefficients were compared to those of the

full model as well as of WKGS 0(tt2) model. The model's cubic term coefficient

was shown to have good agreement with the full model.

A numerical implementation of the 1-dimensional version of the model was

used to simulate wave evolution over arbitrary bottom topography. The numerical

model included absorbing sponge layers to simulate radiation boundary conditions,
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and generation of waves inside the domain by the inclusion of a source function in

the system of equations. The source function was derived from Green's functions

linear theory, but it was shown that it also works well for finite, relatively small

amplitude waves.

Several numerical computations were carried out for solitary waves propa-

gating over both horizontal and sloping bottoms, and many solitary wave proper-

ties were compared with both the exact solution and other models. It was shown

that the FN4 model agrees better with the exact solution than does the WKGS

model. Comparisons between FN4 and GN3 (third order Green-Naghdi model)

with the exact solution showed that GN3 agrees better than FN4 for some prop-

erties. For sloping bottom, FN4 and WKGS models were compared with the very

accurate BEM, and FN4 agreed with BEM better than WKGS. A set of GN3

evolution equations for variable depth is not available at this time, therefore no

comparisons between FN4 and GN3 are available for this case.

Finally, numerical computations of FN4 and WKGS were compared to

several laboratory measurements of waves propagating over submerged bars, and

FN4 generally gave better agreement with the data. The weakly nonlinear version

of the present model, WN4, was also compared to some of the experimental data.

The results showed that the higher order nonlinear terms neglected in WN4 are

essential for accurate prediction of higher amplitude waves, specially if these waves

are in deeper water, since the higher harmonics are more susceptible to phase

errors.

7.2 Recommendations for Future Work

The numerical implementation of the present model was found to have the

following minor problems: (i) for very steep (nonlinear) waves, the convergence
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of the iterative time integration can be fairly slow, besides that, in some cases, a

very low under-relaxation parameter is needed to avoid divergence of the solution.

Further investigation is required to improve the model in this aspect. (ii) A better

treatment of the derivatives of the water depth at locations where they are singular

could improve the performance of the model in that as it is now, filtering has to

be applied to the solution every several time steps, and in cases of very abrupt

transition, the sharp corners of the bottom needs to be smoothed.

In this work we used Green's function theory (linear) to derive the necessary

source function for wave generation inside the domain. In cases of relatively high

amplitude waves, the waves generated by the source function are not a solution to

the equations, and therefore, undesirable frequencies may appear in the solution

near the source region to "make up" for the differences. Further investigation is

needed in this direction to: (i) quantify the validity of the use of a source function

derived from linear theory with a nonlinear set of equations. (ii) derive a source

function which generates solutions of the nonlinear problem for regular waves such

as Stokes and cnoidal waves.

Lastly, the numerical implementation can be expanded to two spatial di-

mensions in a straightforward manner, although the computational cost involved

in solving the system would be quite high for present standards. This step is also

left for future work.
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Appendix A

APPLICATION OF NWOGU'S METHOD AT 0(/,4)

The procedure of Nwogu (1993) rests on choosing the potential or velocity

at an elevation z, in the water column such that the resulting linear dispersion

relationship of the model is optimal in some sense. The dispersion relationship in

a model retaining terms to Q(yz2) is given by

2 _ 1 - (a+ 1/3)[12  (A.1)

1 - ap2

where
12

a = 2z + za (A.2)

The choice a = -2/5 reproduces the (2,2) Pad6 approximant, while the choice

a = -0.39 proposed by Nwogu minimizes the error (in a least-square sense) in

the dispersion relation over the range 0 < p <7r.

Following this procedure, we extend the approximate expression for the

velocity potential (in terms of 0,) to 0(pt4) and obtain

+= 2 + [(1 + Z.)2 (1Z)2]V2

+ [5(1 + Z",) 4 - 6(1 + z,,) 2 (1 + z) 2 + (1 + z)4] V 2V 2 o•c
24

+ QQP6) (A.3)
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This expression is used in linearized versions of (2.4) and (2.6) to obtain the linear

model

7t + V 20c. + 1,2(a + 1/3)V 2V 20) + P4 (5a 2 + 4a + 4/5)V 2V 2V 20. = 0

r7 + 0t +± / 2aV 20at + _,a(2 + 5a)V 2V2¢•t = 0 (A.4)
6

The corresponding linearized dispersion relation is given by

2 1 - (a + 1/3)•t2 + (5a 2 + 4a + 4/5)/4

1 - ali 2 + (5a 2/6 + a/3)p4 (A.5)

This is equivalent to Nwogu's result if terms of O(y4) are dropped. The resulting

dispersion relation contains only a single parameter, and there is no choice of a

which reproduces the desired (4,4) Pad6 approximant:

O 2 = 1 + (1/9)[y2 + (1/945)[ 4 + O(P6)" (A.6)
1 + (4/9)y2 + (1/63)O4

It has been shown, therefore, that by using Nwogu's method of choosing

the potential at a depth z, as the dependent variable in a 4 th degree polynomial

in z, it is not possible to obtain the desired (4,4) Pad6 approximant.
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Appendix B

DERIVATION OF THE SCHRODINGER EQUATION

ASSOCIATED WITH THE PRESENT MODEL

Here we present the derivation of the Schr6dinger equation for the present

model in dimensional form. The nondimensional final results are presented in

Chapter 3.

The constant depth versions of the evolution equations for € and q in

dimensional form are:

7t + V{H [Vý+l (B-'H2) VV2ý

+ (BB21 1D_-BH2 ±+H 4 ) V2V2V 0 (B.1)
4 6 3 30/

+~ jq +4V[.(2) V2

+ (BB21 DB H2+6H4) V2V24

+ V_ _V [(B -H 2) 1H2(v2)

+1VI(B -H )2 (V2) 12+• 1 H2 2

+ 1 (BH 2 H ~4) v 2 $V2V2q= 0 (B.2)
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Assuming J as our small parameter, we expand for our dependent variables as:

7=87i+ J'77 + 3'773

0 jol+ j202 +J'03(B.3)

and introduce multiple scales for the independent variables as:

t= t' + &I + 2 t = t + T + T 2

X= I+ X+ 2 =X+ ,+ 2

y = jy ~/=y 2(B.4)

Before we proceed, we define the following operators:

Lj( =--0.ti + gh(.)x - gCih 3(.)XXXX + gC2h 5 (_)XX,,X

+ C3h 2(.)xxtt _-~ (_xxx (B.5)

L2 =-- 2 (-tTvi + 2gh(.)~xx + 2gh(.)~x1 + 4C~h 3 0(*)x 1

+ 6g~ .)XXX + 2C3h 2(.)XxtT1

+ 2C3h 2(.)~X1 lt - 2C4h 4(.)XX.XtT 1 - 4 h4 -XXj (B.6)

L3 -()TT,- 2(.)tT, + gh(.)xlx, + 2gh(.)~X2 + gh(-)y~y1

-Clh 
3 [6.)~x~x, x + 40(.)XX 2 +±2Q.)x~yyI

+ C2h 5 [15Q.)XXXXXJX 1 + 6()XXX + 30-)XXXyjy1 ]

+ C 3 h5 [.)xxT1 T, + 2 (-xxtT 2 + 4 (.)xitTi

+ (.)xlxltt + 2 0)XX2tt + (.)YiYtt]

- C4 h 4 [0.)XXT 1 T1 + (.)xxxxtT 2 + 2 0)x~xxtT2 + S(.xxxx~tTi

+ 6 (&)xXiXXitt + 40(.)XX 2tt + 2Q.)xxy~y1±] (B.7)

L'. -t- C3h 2 (.)Xxt + C4h 4(.)XXX~t (B.8)

L' (.)T,- C3 h 2 [&.)XXTi + 2(-)~xx1 ]
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+ C 4 h4 [(.)xx.T 1 + (.)xXt] (B.9)

L'(.) - - C3h2 [2 (.)xT + (.)xxT 2 + 2(.)xt + (')x,xlt + ()YiYt]

+ C 4 h 4 [(')XxxxT 2 + 4 (')xxxXxT 1 + 4(')XXXX 2 t

+ 6(')•xxx,t + 2 (-)xy•yit] (B.10)

where C1, C2 , C3, C4 are given in the section below. For each order n = 0, 1, ... we

assume the following solution corresponding to a nonlinear wave train propagating

mainly in the x direction, but allowing the amplitudes 4nm and 77nm to have slow

variations in space and time:

n

77n = E 77nm (X1,X 2,YIY 2,T1,T 2)E m  (B.11)
m=-n7

n

On = E qnm(Xi,X2 ,Yi,Y 2 ,T1,T 2 )E m  (B.12)
m=-n

where E - ei(kx•wt), n indicates the order of the solution, and negative m indices

indicate the complex conjugate of -m for both /,nm and ¢nm. Substituting (B.3)

and (B.4) into the t derivative of (B.2) minus g times (B.1), and into (B.2), and

ordering the problem in powers of S, we obtain for n = 1:

Ll€1 = 0 (B.13)

gr71 + LI'I = 0 (B.14)

Substituting (B.11) and (B.12) with n = 0 into (B.13) and (B.14), we obtain:

D1€11 = 0 (B.15)

and

Oil -igA A 27i1 (B.16)
2w [1 + C3 (kh) 2 + C4 (kh) 4]
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where

D =_ -gk(kh) [1 + Ci(kh)2 + C 2(kh)4] + w2 [1 + C3 (kh) 2 + C4 (kh)4] (B.17)

and (B.15) is the linear dispersion relationship. We arbitrarily assumed that

rjo = 0. We now proceed to seek a "slowly varying equation" for A.

For n = 2, we obtain the equations:

L 10 2 + L 20 1 + g(r77 10)." gC3h2(77101...

+ gC4h(r7l0l.....). + h(+ l•jlxt)t -

- Clh'(7l¢•... )t + C30(010l..)t
124

- 2(O~xx~lxx)t + Cjh4(Oxxdxxxx)t +-= 0 (B.18)

and
t i 1g972 + Li0 2 + L'0 1 - hrlxxt + €1 ' + C3r ,•xt

+ C3h 2€10-€1•o + C4h 4¢1¢lx~xx

+ 2h2€Olxx1 l - C-h2 olxo = 0 (B.19)

Substituting (B.11) and (B.12) with n = 1 into (B.18), and matching the coeffi-

cients of each power of E, we obtain (all terms - E° are zero for this equation at

this order):

(i) terms - E':

2iw 11 + C3(kh)2 + C4(kh)4] [q011T, + Cgo1ix 1 ] 0 (B.20)

which implies that

0~1lT1 + C9•qlx! = 0 (B.21)
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where Cg aw/Ok from the dispersion relationship (B.15).

(ii) terms E2 :

D2022 - 2gk2 {1 + C3 (kh)2 + C4(kh)4

- 9 [1 + Cl(kh)2] } 71111

- iwk 2 [1 + 26 3(kh) 2 + 4C4(kh) 4

"+ C2(kh)4 - (kh)2 - 2C 1(kh)4] oil (B.22)

where

D2 =- -4gk(kh) 1i + 4Cl(kh) 2 + 8C2(kh)4]

+ 4w2 [1 + 4C 3(kh) 2 + 8C4(kh)4] (B.23)

Substituting (B.16) into (B.22), we obtain after some algebra:

022 z-gA 2 {[1± C3 (kh)2 +

2- 1(kh) 2 1 + C(kh)2 + C2 (kh)4] [1 + C1(kh)2]

+ 1 + (203 - 1)(kh) 2 - 2C 4 (kh) 4 + C3(kh)4 - Cl(kh)4} {(kh)2

"+ 15(C4 - C 2 )(kh) 4 + 12(C 1 C4 - C 2 C3)(kh)6}- (B.24)

Substituting (B.11) and (B.12) with n = 1 into (B.19), and matching the coeffi-

cients of each power of E, we obtain:

(i) terms ,,- E°:

g7720 = -- 010T, - [(203 + 1)(kh) 2 + 1] k 2 0 1 1 0 1 _1

+ iwk2 h(771-10 11 - 771,01-1) - (2C, + 32 -+ 2C 4)(kh) 4 k 20110 1 _1

+ iwC 1K 4 h3 (7 1 _101 -_ 71101_1) (B.25)
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Using (B.16) into (B.25), we obtain after some algebra:

7720 = 010T1g

f - [(2C 3 + 1)(kh) 2 + 1] + [-2C3 - - 2C4] (kh) 4

1 + CI(kh)2 + C2(kh)4

2C(kh)4A2 (B.26)
-2(kh)2 +4- 2C()4h [1 ÷C 3 (kh) 2 + C5(kh) 4]

(ii) terms , El:

9,721 = iw 1 + C3(kh) 2 + C4(kh)4] 2,_ [1 + C3(kh)2 + C4(kh )4 011T,

+ 2wkh 2 [C3 + 2C4 (kh)2] O$A,, (B.27)

Since 021 can be absorbed into 011, we set 021 = 0 without loss of generality.

Substituting (B.16) into (B.27), we obtain after some algebra:

12 =VA~ - C3 (kh)2 + 2C 4 (kh)4

2L k -[1 + C3 (kh) 2 + C4(kh)4]AX(

(ii) terms - E£2:

g??22 = 2iw [1 + 4C 3(kh) 2 + 16C 4(kh)4] 022

2 1 20l21 4-7,01 0
+ iwk2h'211011 -+ 2 k1 1 + iwClk4 h3 lll 4 + C3k4h2

11

+ C4k6h4121 + 1C2k6h44•, - 1 k4 h221 - Cl 6 h 4 21  (B.29)

Substituting (B.16) and (B.24) into (B.29), we rewrite (B.29) is the schematic

form:
A2

7722 = S22- (B.30)
8h

where S 22 is a complicated function of kh.
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We are now ready to move on to the next order, n = 3. At this order, a

great amount of algebra is necessary in the evaluation of all the nonlinear terms,

and since we already have evaluated all the dependent variables appearing in these

terms from the previous orders, from this point, we only outline the steps before

we give the final result. For n = 3, the combined equation

a/&t (B.2) - gx (B.1) becomes:

L103 + L202 + L301 + Z1 + Z2 + Z3 = 0 (B.31)

where Z3 are the nonlinear cubic terms involving products of rh and 01, and

their fast time (t) and spatial (x) derivatives. Z2 are the nonlinear terms involv-

ing products between either qjl and 02 or r72 and 01, and Z1 are nonlinear terms

involving products between 71, and 41 and containing either a T, or an X1 deriva-

tive. We now substitute (B.11) and (B.12) with n = 2 into (B.31). To obtain

the Schr6dinger equation for A, only information - E0 and - El is needed. The

only linear term in (B.31) that contributes to '- E° and - El is L301. Using the

relations

01l 1 T1  = -CgqlX 1X (B.32)
¢llIT2- (B.33)

-1TT =c9011x, Xi
O llX Ti =-- -- CgO llX , X' (B .34)

after some algebra, the linear term L301 becomes:

L301 = 2zi*w [1 + C3(kh)2 + C4 (kh)4] X

(11T 2 + C -llX2- '2 2k1X X

+ [-bOoTlTl + gh (OjoXX 1 , + Ojoyly 1 )] (B.35)
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Where w" is obtained by twice differentiating w with respect to k in the dispersion

relationship.

Substituting the relations between 7711, 7720, 7722, 4 11, 022, and A in all - El

nonlinear terms in (B.31), and combining them with the - E' terms in (B.35),

we find the following equation:

AT2,+ CgAx2 -W"Axlxl - -Ayly, + 2ko I A

1 + C31-2 +-C 4fu4 -_,w 2 (1+-C1 )L2) B+ V1ox, + 2w (1+ C31u2 + C4/p4) 01 = 0 (B.36)

where ur is given in nondimensional form in the next section.

Similarly, we combine the linear and nonlinear - E' terms, and after some

algebra, we obtain

-1O~T 1 T, + gh (q0iox, + •b10Y'Y1) = -Lk-AI•2 + SoIA ,1  (B.37)

where

s -w 2 [1 - Cl(kh) 2][1 + (1 + 2C3)(kh) 2 + (2C4 + C32+ 2C,)(kh)4] (B.38)
4(kh)2 [1 + Cl(kh)2 + C2 (kh)4 ]

Now we introduce the changes of variables

X1 - C9 T1,, ST- ,T1 (B.39)

Substituting (B.39) into (B.37) and integrating once with respect to ý we get:

= g2k/(2w) - CgSo AI2 + -o0(7) (B.40)010•= Cg2 - gh
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where -yo(-r) is an integration constant which vanishes for a wave train beginning

from rest where A and O10• tend to zero as ý -+ cc (see Mei, 1989). Substituting

(B.40) with (B.39) into (B.36) with T2/J replacing T1, we have:

- W"A -, igAyy + ic lA A + 71()A= 0 (B.41)

where 71(T) absorbs 70 ("). Without Y, derivatives and without the last term

containing 71(r)," equation above is the cubic Schr6dinger equation. The last

term can be absorbed into a new dependent variable by the transformation A' =

Aeif ,ld,. The nondimensional version of equation above is given in Chapter 3.

The coefficient cU = crl + 02 is given in nondimensional form in the next section.

B.1 Expressions for Cubic Term Coefficient

-QP22  [4±+ 16 C p 2  _ - 2  (1 + 4C,[12 + 16C4 /_4)]

- (E 20 + E 22) (tt + Cdp3 - w-21-1Q1)

2QI
+ 41 2 w'Q2 Q2 [1 + (2 + 5C3) P2 + (lOCI + 17C4 . 4C2) j]

36Q [1 + C3 /_2 
- wO2  (1 + C0tp2)]16Q1

Q2[4 + (8C3± 1/6)+2]

-"2 ( 2J(C2- ) [wQ 2{Ql (1 + C 1 2)}- ( -

2 (C2- 1) w1Q

Where

Q1 = 1+0C3P 2 +C4p 4

Q2 = 4 ( + w-2) (1 + 4CP 2 + 4C044)
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Q3 1 {1-C1 L}+ 21 f{1+(2C3+1) 2 (2C4 +C32 +2C)41}
P2 2 - 2 [Q1 _ P2 (1 + C1P2)] -Q11 [2Q1-1 -2 (2c ) -ct) 4]P22 = -2 c1• -Q- 2 , ( 2C, -C,)
£20 = 2Q_ (1 + Cý,) 2Q [2Q, - 1 + / + (2C, + C3) 14]

E2 =jP22 1+4C3/P2 + 16C4/1,4)
£22 = 2w 2 Q2 Q1  (1+4

+) (1 + - 1  _1 /-1 2 + (2c 1  - 2) [4]+ •e [2Q,- (2C-C

and
1 (B- 1/3); C2 =(B2 - B/3 - D/6 + 1/30)

C3= I 1(B -1); C4 (B 21 1 1/6)2 -4 (B2 B-D/6±+

The corresponding a, and r2 for the full boundary value problem are given by:

cosh 4p + 8 - 2 tanh2[P
1 = 16 sinh 4 

Pu

123



Appendix C

DERIVATION OF SOURCE FUNCTION

Here we derive the x-direction source function for regular waves. The

linearized versions of the mass and momentum equations for 4 over a fiat bottom,

including the source function is given, in dimensional form, as:

qt - hV 2 5 + Clhh3 V 2V 2q + C2h5 V 2V 2V 2 = f(x, y, t), (C.1)

Ot + g77 + hV 24 - C 3 h 3 V 2 V 2qt + C 4 h 5 V 2 V 2 V 2 t -- 0, (C.2)

where coefficients C1, C2, C3, C4 are as defined in Appendix B. Taking the t

derivative of the momentum equation and eliminating 7/ from (C.1) and (C.2),

gives:

Ot - ghV 2b + Cigh3V 2V 24_- C2gh5 v 2 v 2v 2q

- C3h3V2 V2 & + C4h5 V2 V2 V2 & = -gf 8 (X, y, t). (C.3)

We introduce the following transformations:

((p) Y7 27 k(X)eiAeI-iwtdAdw (C.4)

fPxy, t) = + (x)eiAYe-'LtdAdw. (C.5)

Substituting (C.4) and (C.5) into (C.3) we have:

a +[6] + b44 + cq$2] + dq- = gf, (C.6)
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where the numbers in brackets denote order of x derivatives, and

a C2gh5 ,

b -Cigh 3 + ÷C 4h4w 2 - 3C 2gh5A 2,

c gh - C3h2w2 + 2Cigh3A 2 - 2C 4h4A2w2 + 3C2gh5 A4,

d Lw2  ghA 2 + C3h 2,A2w2 - Clgh3A 4 + C 4h4A 4w2 - C2gh'A6 . (C.7)

Now we multiply (C.6) by a Green's function G(ý, x), and integrate the product

with respect to ý, from -co to +oo, which gives:

J + (aGE61 + bG[]+ cG[]+ dG) ý7d6

+ a [Gý5] - G111 [4] + G[2]q$[3] - G[3] [2] + G[4]•+1] + G[5]lj +

+ b [G [3]- G ill+[2] + G-[2] G[3]•] +00

+ c[]] = g Jf dG , (C.8)
--00 -00

where the numbers in brackets denote order of 6 derivatives. Notice that 6 is

a dummy variable and x is now an arbitrary fixed point in the 6 coordinate.

Following the traditional Green's function theory, we seek a solution such that:

aG[6] + bG[4] + cG + dG = J( - x), (C.9)

with boundary conditions such that all boundary terms in (C.8) are eliminated:

Gar 1 -_ (±il)" G, ý[nl -_ (±il)n ý; n 1, ... ,5, x -+ ±+0, (C.10)

where J(6 - x) is the Dirac delta function at 6 = x. We are interested in solutions

where a :# 0. By integrating (C.9) just across = x, from x -E to x + (E- -+ 0),

and requiring continuity of G,G[11,G[2I,G[31, G[4], we are left with:

aE]X+CaG -I =1 (C.11)
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Away from • = x we can write:

G161 + alG [4] + a2G[2] + a3 G = 0, (C.12)

where a, = b/a, a2 = c/a, a3 = d/a. Seeking a solution of the form:

G - e (C.13)

we obtain the characteristic polynomial:

016 - alcr 4 
- a 2O'2 

- a 3 = 0. (C.14)

For the case in which we are interested, the roots of (C.13) can be written as:

Ol = -a4 = 1, (C.15)

0'2 = -0'5 = iLl, (C.16)

U3 = -U6 = iL 2. (C.17)

where 1, L 1, L2 are positive real numbers, and can be obtained from the roots of

the bi-cubic polynomial (C. 14). We now write the solution for the source function:

SX G + = A Gei($-x) + B GeLn ($-x) + CGeL2(C-X) if ý < xG(•, x)= (C.18)

G_ = Aael(x•-) + BGeL,(x•-) + CaeL2(X-ý) if 6 > X

Continuity of G, G[2], G141 are satisfied automatically, as are the boundary condi-

tions at ±oo. Continuity of G[11, G[3], and substitution of (C.18) into (C.11) gives

3 equations for the 3 unknowns AG, BG, and CG, the solution being:
-i

AG = 2al (12 + L,2) (12 + L 22) (C.19)
1

BG I (C.2.0)
2al (12 + L 1 2) (LI2 - L 2 2)

1
CG 1 (C.21)

2al (12 + L 22) (L 22 - L 12)
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(C.19) can be rearranged to give:

-il

2(216 - a1 14 + a 3 ) (C.22)

From (C.8) we can write:

OW(+ = J G(, x)gf(ý)dý

00J G (ý, x)gf(ý)dý + G+J x)gf( )dý. (C.23)

We arbitrarily choose:

f(x) = D, exp (-f0" x2). (C.24)

For sufficiently large values of x (progressive wave traveling to greater values of

x), and using (C.22):

q(x) = f-x G-(, x)gf(6)d6

= gD, [AGileIX + BGI 2 eL1X + CGI3e-L1, (C.25)

where

/'+00 2 ~ _ I1]__ exp (--.3x' - ilx) dx 7 exp (C.26)

12 = +00 exp,(--sx2 + Lx) dx= g exp (L)1 (C.27)

f+00 
2~13 = +exp (O,-x2 + L2x) dx : exp (-n-) (C.28)

(C.29)

12 and 13 become negligibly small as x -- 0, so:

q(x) ,- gDsAaIlelx. (C.30)
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We here are interested in waves propagating in the x direction. The desired

progressive wave solution (waves propagating in x) of (C.1) and (C.2) away from

the source region (x -+ oo) is:

77 = 7oei(kx-wt) (C.31)

= Oi(kx-wt) (C.32)
o0 ig?70

w [1 + C3(kh) 2 + C4(kh) 4] (C.33)

w2 = gk2h Cl(kh)2 + C2(kh)4O kh1 + C3(kh)2 + C4(kh)4' (C.34)

Setting A = 0 (no y dependence) and I = k we can write:

q(x,y,t) = gD.AGllei(kx-wt). (C.35)

Substitution of (C.32) and (C.33) into (C.35), gives the relationship between the

source function amplitude D, and the desired wave amplitude r7o:

iZ7o (C.36)
= wAGI1 [1 + C3(kh) 2 + C4 (kh)4](
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